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Abstract

After an introduction to particle therapy and prompt gamma detection, this doctoral dissertation
comprises in its first part of original work the development, analysis and release of a variance re-
duction method for the simulation of prompt gammas (PGs) in clinical proton therapy simulations,
achieving a gain of about a factor 103 with respect to analog Monte Carlo. Secondly, the method is
used to study clinical deviations and the associated PG detection, which helps illuminate if and how
PG cameras might be used in clinical scenarios. Spot-by-spot PG verification with two contemporary
collimated PG cameras is found to be unlikely to produce usable results, but a spot grouping method
is proposed that does not adversely affect the fall-off position (FOP) precision and makes millimetric
FOP measurements possible.

The variance reduction method (named vpgTLE) is a two-stage track length estimation method
developed to estimate the PG yield in voxelized volumes. A PG production database is precomputed
once and can be reused for every patient-source combination. As primary particles are propagated
throughout the patient CT, the PG yields are computed as function of the current energy of the pri-
mary, the material in the voxel and the step length. The result of this first stage is a voxelized image
of PG production yield. The second stage uses this intermediate image as a source to generate and
propagate the number of PGs throughout the rest of the scene geometry, e.g. into a detection device,
corresponding to the number of primaries desired. For both a geometrical heterogeneous phantom
and a complete patient CT treatment plan with respect to analog MC, at a convergence level of 2% rel-
ative uncertainty on the PG yield per voxel in the 90% yield region, a gain of around 103 was achieved.
The method agrees with reference analog MC simulations to within 10−4 per voxel, with negligible
bias.

The second major study conducted in this PhD program was on PG FOP estimation in clinical
simulations. The number of protons (spot weight) required for a consistent FOP estimate was inves-
tigated for the first time for two optimized PG cameras, a multi-parallel slit (MPS) and a knife edge
design (KES). By studying recent treatment plans from various proton clinics, we observe very few
spots with weights over 108. Trends in increased precision in treatment planning seems to point to-
wards more and small spots, at least for certain clinical conditions where tolerances are low. A CT
and replanning CT (RPCT) was obtained in the Centre Léon Bérard clinic in Lyon. Initial treatment
was created based on the CT image, and after the patient had suffered from significant weight loss,
replanning was deemed necessary and the RPCT created. We created a proton treatment plan for the
CT image, and studied the difference in detected PG signal by simulating the treatment with both the
CT and RPCT. This is the closest a PG simulation study has come to studying the effect due to mor-
phological change to date. Three spots were selected for an in depth study, and at the prescribed spot
weights were found to produce results of insufficient precision, rendering usable clinical output on
the spot level unlikely. When the spot weight is artificially increased to 109 primaries, the precision
on the FOP reaches millimetric precision. On the FOP shift the MPS camera provides between 0.71 -
1.02 mm (1σ) precision for the three spots at 109 protons; the KES between 2.10 - 2.66 mm.

Grouping iso-energy layers was employed in passive delivery PG detection for one of the PG cam-
era prototypes. Here we apply iso-energy grouping for both cameras, and compare it with a new spot
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grouping method based on the notion of iso-depth. In iso-depth grouping, enabled by active delivery,
spots with similar distal dose fall-offs are grouped so as to provide well-defined fall-offs as an attempt
to sidestep range mixing. While with spot measurements the measured shift was in agreement with
the PG emissions shift, for both grouping methods this was not the case. The precision of the shift
improved with respect to iso-energy grouping for the KES camera (1σ = 3.05 and 2.41 mm, iso-energy
and iso-depth resp.), but not for the MPS (1σ = 1.00 and 1.04 mm, iso-energy and iso-depth resp.).
It is shown that grouping spots does not necessarily negatively affect the precision compared to the
artificially increased spot, which means some form of spot grouping can enable clinical use of these
PG cameras. With all spots or spot groups the MPS has a better signal compared to the KES, thanks
to a larger detection efficiency and a lower background level due to time of flight selection.
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Preface

This document is the record of the doctoral research program conducted by Brent Huisman from
September 2013 to May 2017 in the CREATIS (Biomedical Imaging Research Lab) and IPNL (Insti-
tute of Nuclear Physics of Lyon) laboratories at the University of Lyon. Entitled “Towards real-time
treatment control in protontherapy using prompt-radiation imaging: simulation and system opti-
mization”, work consisted of various studies of the characteristics of PG (Prompt Gamma) imaging
for particle therapy. Most notable outcomes are the implementation of a variance reduction tech-
nique for PG simulation, available to the general public, and a study on clinical deviations during
treatment and the possible use of PG imaging in detecting the change.
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Chapter 1

Particle Therapy

Cancers are malignant anomalous cell growths that limit normal human functioning and may result
in permanent disability or death. Most cancers are environmental (pollution, lifestyle choices, in-
fections) while some are due to an inheritable predisposition (International Agency for Research on
Cancer, 2014). With age various risk-factors accumulate, which explains the higher incidence of can-
cer among the elderly. With continuous advances in health care, cancer is increasingly the leading
cause of death. Preventative measures may stop or slow the development of certain kinds of cancers.
If a cancer manages to develop, various types of countermeasures exist to combat it. Most common
treatments include surgery, anti-cancer chemicals or drugs, possibly aided by biomarkers, and radio
therapy (RT). Often, various modalities are combined to improve the chances for recovery.

In RT, ionizing radiation deposits dose in tissue, where dose quantifies the damage to the tissue.
Radiation may be applied by introducing radio-active sources into the body, through ingestion, in-
jection or placement through surgery. External beam radio therapy (EBRT), the most common form
of radiotherapy, is applied by directing beams of ionizing radiation through the body. Localized can-
cers are commonly referred to as (malignant) tumors, and EBRT requires the cancer to be localized,
because it targets spatial regions. About half of all tumors involve treatment with EBRT. Various kinds
of ionizing radiation are or have been used, but by far the most common is X-ray: photons with ener-
gies in the 1-20 mega electron volt (MeV) range. X-rays have another useful feature: they can be used
to image the body because different tissues attenuate the beam differently.

Particle therapy is a more recent type of EBRT, and it refers to the medical use of accelerated
ions. Hadron or ion therapy would more correctly differentiate it from X-ray therapy from a physics
point of view, but since the therapy involves multiple disciplines (physics, biology, medicine) the
word particle appears to be the most widely understood term to differentiate it from X-ray therapy.
Outside of experimental facilities, two species of ion are used in medical particle therapy: protons
(about 90% of patients treated) and carbons (10%). In the rest of this thesis, the term particle therapy
will be used.

Particle therapy is seeing an increasing number of patients treated (figure 1.1). Particles are ac-
celerated in synchro- or cyclotrons and then ’shot’ into the tumor. This modality can be considered a
spin-off of high energy physics, which uses particle beams to probe matter and physical interactions.
Medical accelerators are conceptually no different from experimental physics accelerators. There is
a very appealing physics reason to choose particles over photons in EBRT: these ions exhibit a def-
inite range in matter, as opposed to an exponential dose decrease through absorption as seen with
X-rays (figure 1.2). Moreover, right before the end of their range, the deposited dose spikes: the Bragg
Peak (BP). By placing this spike at the site of the tumor, for a given level of dose in the tumor, the
surrounding tissue receives a reduced dose with respect to treatment with X-rays.

EBRT targets a spatial region, and for photons this means all tissues in the path of the beams. To
deconcentrate the dose in the healthy tissue surrounding the tumor, X-ray treatments usually involve
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Figure 1.1: Particle clinics and patients treated with particle therapy as function of time (Jermann,
2015).
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beams from multiple directions, fields, by rotating a gantry or moving the patient-table (intensity-
modulated radiation therapy, IMRT). In particle therapy the number of fields can be reduced to one
or two, whereas IMRT may have more than 10.

Figure 1.3: On the left a carbon irradiation using 2 fields. On the right a treatment plan for an X-ray
irradiation using 9 fields. Using fewer fields the carbon plan manages a much more confined dose
delivery. Note that in addition the carbon plan deposits almost no dose in the optical nerves, which
is a well known type of tissue extremely sensitive to radiation. Source: Amaldi and Kraft (2005).

In summary, particle therapy appears to be an improvement over X-ray therapy (fig. 1.3). A sig-
nificant disadvantage at this time is cost of treatment: particle therapy requires expensive particle
accelerators. A proton treatment installation will cost, at time of writing, between one and two or-
ders of magnitude more than an X-ray treatment installation, and facilities capable of accelerating
heavier ions such as carbon even more. Moreover, a significant expansion of the hospital itself is
often required to host the accelerator, and also more staff must be enlisted to operate the accelera-
tor. Work is being done to make more compact and affordable medical particle accelerators possible.
Dubbed "single room solutions", the Varian ProBeam and the IBA Proteus One are examples of such
designs.

1.1 Interactions in matter

Particles lose energy through interactions with matter, thereby slowing down. The particle undergoes
such interactions in rapid succession. My mental picture is similar to a game of Sjoelen, a traditional
Dutch tabletop game resembling a mix of billiards and pinball, where wooden pucks are shuffled
through sometimes dense ’forests’ of other wooden pucks, with unpredictable and random trajec-
tories as result. Collisions are mostly elastic, while the pucks lose energy through friction with the
table. As in Sjoelen, mastery of the game of particle therapy reduces the unpredictability and may
lead to victory.

1.1.1 Microscopic view

Collisions between particles, are either elastic or inelastic. For elastic collisions, the kinetic energy
of the involved particles is preserved: any transfer of (kinetic) energy puts other particles in motion.
An inelastic collision is where part of the kinetic energy is converted, putting target atoms or nu-
clei into excited states, or even the incident particle itself. Upon relaxation, new secondary particles
may be created. These are often photons and sometimes positrons, which then may recombine with
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Figure 1.4: A sjoelbak, a game that resembles particles traversing matter on a macroscopic scale.
Image CC-BY-NC-SA licensed.

electrons and generate two back-to-back photons, for which PET detection (Positron Emission To-
mography) was specifically designed. These secondaries may exit the target and give us hints as to
what went on in the target; more on this later.

An incoming proton knocking an electron out of orbit into a trajectory away from its atom, ion-
ization, requires a minimum amount of energy to liberate the electron from its atom, even if most of
the transferred energy ends up in the form of kinetic energy of the electron (so called δ-rays). All in
all, heavier ions ionize the target matter much more than lighter ions (with the same velocity), see
figure 1.5.

Particle physics distinguishes four elementary interactions of forces: electromagnetic force, strong
and weak nuclear force, and the gravitational force, each with an associated strength which has a
force-specific long distance behaviour and range. For the purposes of accelerated particles in (bary-
onic) matter, the dominating force is the electromagnetic force, because it is much stronger than the
gravitational force and the two nuclear forces have finite ranges on the order of subatomic scales.
Only when an accelerated particle gets very close to a target nucleus, will the strong nuclear force
become a factor. For the electromagnetic force, it is useful to distinguish the primary particles based
on their electric charge: neutral particles, such as photons and neutrons, show very different inter-
actions in matter than charged particles, such as protons, electrons and heavier ions. Incidentally,
charged particles are much easier to accelerate than neutral particles. Photons being the only bosons
in this list, are a bit of an exception, and are technically not the primary particle in X-ray generators.
Electrons are accelerated, by creating a strong electric field, and then collide with a metal anode,
where the photons (in medicine called X-rays) are created. For all other particles the same principle
holds true as for the electron acceleration in X-ray generators: because of their charge, the protons
or ions accelerate due to the externally applied electric field.

Neutral particles

Neutrons can only interact through the weak and strong nuclear forces, which means that only when
they get very close to target nuclei they will scatter or excite a target nucleus. The electric fields of
the nuclei and their electrons leave them unperturbed, so neutrons do not scatter in interatomic
space. Photons, being the carriers of the electromagnetic force, do interact with the electromagnetic
distortions that electric charges cause. As such, they undergo various interactions, including with
target nuclei, where they may penetrate easily because they are insensitive to the weak and strong
nuclear forces. Since nuclei are composed of (many) charged particles, held close together by the
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Figure 1.5: Carbon ions and protons have a very different ionization potential along their paths. Be-
cause carbon has much densely ionized clusters, the disrupted volume reaches the dimensions of a
DNA strand, which then can be broken clean in two, greatly disabling the host cancer cells ability to
recuperate. Image courtesy of Dieter Schardt.
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strong nuclear force, a photon with sufficient energy, once in a nucleus, is likely to put the nucleus in
an excited state. The nucleus may then decay under emission of another photon or light particles.

A bit further from the nucleus, but still close enough, the net electric charge may cause a pass-
ing photon of sufficient energy (>1 MeV) to undergo pair-production: the energy of the photon is
converted into particle and its anti-particle, often an electron-positron pair. The likelihood of pair-
production increases with photon energy (up to a certain point) and also approximately with the
square of atomic number of the nearby atom. The inverse of pair-production, electron-positron an-
nihilation, is the principle method behind PET (Positron Emission Tomography) imaging, as will be
discussed in a later chapter.

The two other main interactions of photons with matter are the photoelectric effect and the
Compton effect. In the photoelectric effect the photon energy is transferred to an electron, which,
depending on the atomic orbital of the electron and the energy of the photon, may be enough to
put the electron into an excited state or liberate it from its atom altogether. Elsewhere, the electron
may then be reabsorbed and emit another photon. The Compton effect is an inelastic scattering of a
photon by a charged particle, in regular matter most likely an electron. It results in a reduced photon
energy which is converted into scatter of both the photon and the now free electron (momentum
must be conserved).

Charged particles

Figure 1.6: Particles in matter slow down through various interactions with the target matter. Elec-
tronic energy loss (interactions with target electrons) dominates along almost the entire path of ions
in matter. Nuclear energy loss (energy transfer to target nuclei) becomes significant only at the very
end of the incident ions path (the last tens of µm).

Charged particles traversing matter will interact with the target electrons or nuclei, both predom-
inantly through electromagnetic interactions. Materials can be characterized by a stopping power:
how much are traversing particles decelerated (through electromagnetic interactions)? For ions (not
electrons), we find that electronic stopping is the main component slowing the particle down (fig. 1.6).
Note that electronic or nuclear stopping refers to stopping due to electrons or nuclei in the target, not
to the fundamental (strong nuclear, weak nuclear or electromagnetic) forces. Naturally, the incident
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particles properties (type, energy, mass, charge) affect the stopping power, thus stopping power is a
property for a certain particle moving through a certain target material.

The stopping power is an aggregate effect of the Coulomb force exerted on the primary particle
by electrons and nuclei in the target. Depending on primary energy and mass difference with target
particles, the primary is deflected because of these Coulomb forces. Since the number of target parti-
cles is of the order of the number of Avogadro, the number of such small angle scatters is large, which
is why the effect is called Multiple Coulomb scattering (MCS), sometimes also referred to as elastic
Coulomb scattering. The resulting spread of the beam in the transverse plane can be described in
terms of angle θ0 using equation 1.1 from Molière’s theory (expressed in the Highland-Lynch-Dahl
formula):

θ0 =
13.6MeV

βcp
z

√
x/X0 [1+0.038 ln(x/X0)] (1.1)

where x is the traversed depth through a certain material and p, βc and z are the momentum,
velocity and charge number of the incident particle respectively, and X0 radiation length. An illus-
tration of the eventual spread for various particles and various energies can be seen in figure 1.7.
Electrons, due to their lower mass, will be deflected over larger angles and therefore exhibit a more
rapid loss of forward direction than hadrons. Deflection of particles in each others electromagnetic
fields may also cause the production of photons: bremsstrahlung. Again, because of the mass differ-
ence, deflection of electrons is large close to nuclei, and the bremsstrahlung effect greatest.

Figure 1.7: The beam spread for different types of hadrons at different energies are shown for a certain
beam and a certain setup. The trend visible is that particles with higher energies and/or heavier ions
provide a smaller spot size. This effect in combination with the former two results in a spread of
the Bragg peak over a small volume, which is a few millimeters in depth (figure 1.2) a bit more in
the transverse plane. Note that the distance from the exit window need not be this large, and the
relative performance of the (lower energy) protons can be increased. Image courtesy of U. Weber of
Rhön-Klinikum.
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Nuclear interactions

Because of their mass and the large number of nuclei in the target, there is a non-negligible proba-
bility that the incident and target nuclei can get close enough for more complex nuclear interactions.
Head-on collisions leads to nuclear fragmentation: a broken up ion translates to various new lighter
nuclei, generally traveling at a similar speed to the parent ion. Heavier ions can break up into heav-
ier parts (heavier than protons), and these parts in turn can break up again. If the incident particle
is a low energy proton, a head-on collision may also lead to fusion: the creation of a heavier and
excited isotope of the former target nucleus. Excited nuclei will decay, often by the production of
secondaries, one of which is the emission of a photon. Such photons are produced within 1 ns of the
collision, giving them their name Prompt Gammas (PGs). Detecting such a PG gives a very direct in-
dication of where a collision took place, hence a likely location of dose delivery. Another possible sec-
ondary is the positron, which is emitted after β+ decay, and thus not as prompt as PGs. After a short
range it annihilates with the abundant electrons in the target, producing the signature head-to-head
photons signal that lies at the core of PET. Note that other secondaries such as neutrons, protons and
alphas radiation may be produced, each in turn possibly repeating the process at other target nuclei.
Lighter incident nuclei, in particular protons, tend to not produce heavy (hadronic) secondaries, so
for proton therapy in particular PGs are almost exclusively produced in primary-target interactions.

Figure 1.8: Dose curve for 670 MeV/u (20Ne) ions in water measured at GSI and calculated contri-
butions of primary ions, secondary and tertiary fragments. Image courtesy of Schardt and Elsässer
(2010).

In collisions that are not quite head-on, where the primary and target ions graze, fireballs are
produced. Only a few constituent protons and neutrons may be separated from target and primary,
but they may inherit much of the velocity of the primary. These fireballs are responsible for the dose-
tail past the Bragg-peak seen when heavier ions are used as primaries (see figure 1.9). Figure 1.8
shows for 20Ne which fraction of primaries and secondary fragments contribute to the ionization.
Heavier ions thus come at the cost of a delocalized dose deposition. Because protons can not break
up, they don’t suffer from nuclear fragments and the associated downsides.

An important consideration for particle treatment is neutron dose. When protons and host nuclei
collide, free neutrons are one of the possible fragments. They tend to keep the speed and direction
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of the incident particle. Fast neutrons seem to have a small contribution (1% in actively scanned
carbon-ion therapy) to the effective dose (Gunzert-Marx et al., 2008). Neutrons do have a higher RBE
(Relative Biological Effectiveness) than protons, and they are linked to induced secondary cancers.
Brenner and Hall (2008) argue that since most neutrons are created in passive beam shaping ob-
jects, any adverse effect is easily remedied by using better accelerator designs and active scanning
techniques.

1.1.2 Macroscopic view

Figure 1.9: dE/dx curve, or stopping power, for protons and carbon ions as function of initial energy.
Assuming the initial energy is in the range of a few 100 MeV/u, it is clear how the Bragg-peak comes
about: the deceleration accelerates itself Schardt and Elsässer (2010).

As mentioned, the multitude of interactions and their infinite combinations can be aggregated in
a macroscopic behavior. The macroscopic description for particles in matter is defined as the energy
loss per unit distance traversed:the stopping power. It is quantified as S(E):

S(E) = Snucl (E)+Sr ad (E)+Sel ec (E)

=−〈dE

d x
〉nucl −〈dE

d x
〉r ad −〈dE

d x
〉el ec

(1.2)

where the energy loss due to nuclear interactions, radiative processes (bremsstrahlung) and elec-
tronic interactions are separated. All physics processes are reduced to a statistical average energy
loss per unit distance traveled, and naturally the expression is different for different particles and cir-
cumstances. The Bethe-Bloch equation is one of the first things a young particle physicist will learn,
because it is the expression for Sel ec (E), which is for light charged particles such as protons the main
component of the full stopping power:

−Sel ec (E) =
〈

dE

d x

〉

el ec
= 4π

me c2 · nz2

β2 ·
(

e2

4πε0

)2

·
[

ln

(
2me c2β2

I · (1−β2)

)
−β2

]
(1.3)

where c is the speed of light and ε0 the vacuum permittivity, β= v
c , e and me the electron charge

and rest mass respectively, v the speed of the primary with charge z (in multiples of the electron
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charge) and energy E , traveling a distance x into a target of electron number density n and mean
excitation potential I . For protons, only at very low energy scales (< 1 MeV) does the nuclear com-
ponent of the stopping power reach the same magnitude as the electronic component, which has
next to no effect on the total distance traversed. Therefore, most sources on proton stopping power
implicitly talk about the electronic stopping power.

The electronic and nuclear stopping powers for protons and carbon ions were shown in figure 1.9.
Naturally, the precise curve is different for each combination of particle and target matter, but the
main features are similar. At energies over ∼100 MeV/u, the stopping power shows a wide minimum,
a region often referred to as the minimum ionizing range. Going down from that minimum to lower
energies, we observe a peak. Here, the energy deposition increases tremendously (note the loga-
rithmic energy scale), and hence this is the clinical range. After all, the goal of particle therapy is
to disrupt the target material, and the more energy can be deposited, the more damage is done. At
very low energies the trend is downwards again, but at such energies, the particle range is so low it is
almost immediately stopped, see fig. 1.10.

0 5 10 15 20 25 30

Depth [cm]

0

50

100

150

200

E
n

er
gy

[M
eV

]

Proton Range in Water

Figure 1.10: The range of protons in water computed in the CSDA approximation (Berger, 1995).

Now, with this macroscopic view in mind, shooting a particle into a block of matter is greatly sim-
plified in comparison to simulating all the particular interactions described before. In certain cases
the output of the physics processes are not of interest, but the average slowing down behavior of the
particle and its deposited energy is. This is called the Continuously Slowing Down Approximation, or
CSDA. If no other physics is considered, one can simply integrate the inverse stopping power of the
energy of the particle (assuming the energy is low enough it does not pierce the target), and obtain
the average or CSDA range rC SD A :

rC SD A =
Einc∫

0

1

ρ

1

S(E)
dE (1.4)

where ρ is the density of the target material and S(E) the stopping power of the particle in that
material, and Einc the energy of the incident particle.
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1.2 Dosimetry

Treating cancer with radiation is based on the idea that particles traversing tissue do damage. A
definitive and comprehensive model for the quantification of damage due to radiation has not been
found, and the field of radiobiology exists to answer this question. Along the particle track, as de-
scribed by the stopping power (fig. 1.9), kinetic energy is lost and considered ’deposited’. In the most
general terms, damage is regarded as receiving a dose D:

D[G y] = E

m
[

J

kg
] (1.5)

where E
m is the deposited energy per unit mass, with S.I.-unit Gray. The unit, an amount of en-

ergy per unit mass, implies that energy confined to a mass, at least for a certain period, does damage.
Ionization may be regarded as such a confinement: it occurs along the primaries path and depends
on the energy of the incident particle and the particular reactions that took place. In dosimetry the
electronic stopping power is often called (unrestricted) Linear Energy Transfer or LET (Seltzer et al.,
2011). Since energy is conserved, to first degree all the kinetic energy of the primary particle is trans-
ferred to the target. However, since some of the energy is converted into secondaries, which in turn
may travel elsewhere, the unrestricted LET does not coincide with the deposited energy. The concept
of deposition requires a criterion: how local and for how long must the energy remain to be consid-
ered deposited? After all, physically all energy disperses eventually. The concept of the restricted
LET adds a δE threshold, under which the energy liberated is considered too low to escape through
the production and travel of secondaries. In particular, the energy deposited by δ-electrons is con-
trolled with this parameter. The threshold is arbitrary, thus a matter of context: in dosimetry studies
it is usually set somewhere in the 10 keV range, while in microdosimetric studies the range is 100 eV
(Shortt et al., 2006).

Regardless of the precise δE threshold chosen, LET is found to be a good proxy for damage due
to ionization, and is easily integrated to attain the deposited dose from the energy loss, also known
as absorbed or physical dose. However, this is still not the final measure of damage, as one of the
first publications on it warned us for (Rossi, 1959). The stopping power and thus the LET are macro-
scopic quantities, describing energy loss through energy transfers. Of course, these transfers occur in
discrete physical processes, and to understand the damage we must understand the quantity and lo-
cation of these energy transfer points. Depending on the quantity of dose, the particle species and its
energy (referred to as radiation quality), the transfer points may be distributed differently and have
different average magnitudes. The LET describes just the macroscopic energy loss along the track. To
incorporate the differences in damage of the various radiation qualities, a weight is added to convert
the physical dose into an effective, equivalent or biological dose H:

H [Sv] = E

m
[

J

kg
] (1.6)

where the unit is Sievert to distinguish it from the physical dose.
In low dose environments, where the context of possible damage is radiosafety, such as nuclear

power plants, people working with radiation sources or with machines generating radiation (X-ray
machines), the equivalent dose is defined as:

H = wF ×D (1.7)

where wF is the weight factor that is defined by the International Commission on Radiological
Protection. As of 1990, for photons wF = 1, for protons wF = 2 and for heavier ions wF = 20, and
independent of the particle energy, except for neutrons which have a more complex weight factor.
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In applications where radiation is directly imparted on a human for the specific purpose of dam-
aging tissue, treatment, the equivalent dose is defined as:

H = RBE ×D (1.8)

where RBE stands for the Relative Biological Effectiveness, relative to photon treatments. An im-
portant assumption in this equation is that the stochastic effects of a given type of radiation can
be scaled to the reference radiation. The RBE for photons is thus 1 by definition and for protons is
was concluded to be on average 1.1 (Paganetti et al., 2002). This means that to reach the default 2
Gy dose per treatment session, or fraction, proton beams actually deliver a physical dose of 1.82 Gy.
For carbon ions, the RBE used varies between treatment centers (depending on the radio-biological
model used), generally around 3 but in at least one case it is set to 1 (Durante and Paganetti, 2016).
When doses are compared, people always speak about the (iso)effective dose H, which for photons
is equivalent to physical dose D and therefore sometimes leads to H being expressed in GyE (Gray-
Equivalent) instead of Sv (Fossati et al., 2012).

Various models attempt to predict RBEs based on a derivation and experimental inputs. In Eu-
rope, various versions of the Local Effect Model (LEM) are in use, while the NIRS (Japanese National
Institute of Radiological Sciences) models are used in Japan. Colleagues recently published a new
model, NanOx Cunha et al. (2017). Because studying the nanoscopic effects of particles in cells or or-
gans is unfeasible, an aggregate biological effect can be obtained by counting the surviving fraction
of cells in a petri-dish after exposing it to a particular radiation quality, under a particular circum-
stance. This is a standard technique in radiobiology. These curves are well described by the so-called
Linear Quadratic (LQ) model:

S(D) = e−αD−βD2
(1.9)

where S is the surviving fraction under dose D. α and β are free parameters, where α may be
interpreted as lethal events and β as sublethal events. Instant cell death is a double DNA-strand
break (DSB), while most other damage, even breaking one of the DNA strands, can often be repaired.
Note that other interpretations of α and β exist. Lethal damage through non-DSB damage is a matter
of piling on enough sublethal events to render a cell too damaged to repair. β therefore depends on
the dose rate (how fast the dose is delivered) and the number of fractions for a given experiment,
because the time the cancer cells have to recover determines the severity of the nonlethal events. A
brief but nice overview of the links between α and β with biological types of damage is provided by
Chapman and Gillespie (2012).

It is useful to consider the dissipation of energy in biological context. In dosimetry, direct and
indirect damage (Podgorsak and Kainz, 2006) can be distinguished. Direct damage is then the instant
alteration of the tissue by the primary and secondaries, while indirect damage are the delayed effects
induced by oxidative species produced during irradiations (radiolysis). Often cells are modeled as
bags of water (about 80%) containing a nucleus and a number of organelles. Atoms are bound in
molecules, and excited atoms may cause molecules to break up or change function: the molecules
are destroyed or damaged. The changed or destroyed molecules can in turn change the behavior of
organelles or even the cell as a whole, which in turn can instigate all kinds of biological processes. In
addition, in Cunha et al. (2017) it is found that about 20% of all energy is converted to heat: molecular
vibrations, the interaction between electrons and water phonons and the reattachment of electrons
to atoms.

In cell survival studies, the matter under investigation is just a few cell diameters thick. Over this
range, the LET (or electronic stopping power) can be assumed to be constant, and that is why the
radiation qualities can be ranked in terms of their LET. A higher LET translates to a higher potential
for ionization. Photon treatments and lower LET radiation such as protons ionize less strongly, and
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probably rely on the accumulation of effects to produce a lethal event, and will have a largerβ, some-
times called the shoulder in cell survival curves, see figure 1.11. The α/β-ratio is thus an indication
of the LET and the main instrument for determining the RBE.

Figure 1.11: The typical shapes of cell survival curves for low and high LET particles (Pouget and
Mather, 2001), where lower LET radiative qualities demonstrate the shoulder: an increased β com-
ponent in eq. 1.9. These curves tend to describe experimental data well.

A clinical way to establish the efficacy of a treatment is to study the Tumor Control Probability
(TCP) and the Normal Tissue Complication Probability (NTCP), see fig. 1.12. The surest way of de-
stroying a tumor is to deliver as much dose as possible, but that leads to too many complications to
surrounding tissues. Fortunately, normal tissue tends to be more resistant to radiation than tumor-
ous tissue (erratic cells tend to be worse at damage reparation), which presents us with the so-called
clinical window: the dose that allows us to eradicate (most of) the tumor but spare (most of) the
surrounding tissues.

1.3 Particle beams in medicine

1.3.1 Accelerators

Performing a particle treatment is about putting particles in the right place. First, the particles must
be accelerated. Cyclo- and synchrotrons are the main two types of devices that provide particle
beams. The cyclotron is an older technique that has the advantages of being compact, providing
high and continuous beam currents (fluence) at the cost of providing just one extraction energy. Two
half cylinder shaped ends have internal magnetic fields keeping the particles in their (expanding)
orbit, while between the two halves an electric fields provides the acceleration. The frequency of this
field determines the micro time structure of the beam, which is an important property for detec-
tors further down the line. The net effect is that particles are delivered in small ’bunches’, with ’dead
time’ between them: the duty cycle. Techniques such as the synchro-cyclotron and more recently
the isochronous cyclotron may vary the magnetic field (as function of time or distance to the center
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Figure 1.12: The TCP and NTCP plotted as function of absorbed dose. The region between the curves
is the therapeutical window: ideally a treatment meets or exceeds the TCP line, but stays below the
NTCP line.

respectively) to deal with relativistic effects, enable smaller or cheaper cyclotron geometries, provide
higher energies and so on, at the cost of a lower duty cycle, see table 1.1. In addition, there is now
a macro time structure to consider: since the fields change, the cyclotron can no longer be loaded
continuously, but once per magnetic or electric cycle.

Table 1.1: Main parameters of three particle accelerators. Data collected from manufacturers pre-
sentations.

Cyclotron Synchrotron Synchro-cyclotron

Example IBA C230 HIT IBA S2C2

Energy at extraction 230 MeV 221 MeV 230 MeV

Macro time structure

- period - ≈ 10 ns 1 ms

- pulse length - ≈ 10 ns 1 ms

Micro time structure

- period ≈ 10ns ≈ 100 ns 10 ns

- bunch length ≈ 2 ns ≈ 10 ns 2 ns

Mean beam current (at nozzle) 3 nA max. ≈ 1.5nA max. ≈ 2 nA

Current during macropulse - max. ≈ 3 nA max. ≈ 300 nA

Duty factor 0.2 0.05 0.0014

Protons per bunch ≈ 200 ≈ 2000 ≈ 20k

The synchrotron is made up of multiple linear accelerators, usually placed in a circular setup
so that a single accelerator segment can accelerate the bundle multiple times by increasing their
electric field strength in each successive cycle. Synchrotrons are larger installations, but can extract
particles at various energy levels, obviating the passive (and scatter and secondary inducing) slowing
down methods required with cyclotrons. Due to most synchrotrons being circular in order to reuse
accelerator components, they also have a macro time structure: the ring is filled once and then the
particles are cycled up to the requested energy and extracted. Macro time structure means extra
dead time with respect to the micro time structure, translating to a lower duty factor, as can be seen
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in table 1.1.
In the end, the choice of the accelerator design depends mainly on the goal of the facility, fi-

nancial factors and building size. Most research oriented facilities and multiple ion facilities favor
a synchrotron design, because of its flexibility (multiple ions basically exclude cylcotron-based de-
signs). Smaller facilities or facilities with a purely clinical focus tend towards the cheaper and smaller
cyclotron designs.

1.3.2 Beam shaping

Figure 1.13: A photo of the gantry at the Heidelberg Ion-Beam Therapy Center (HIT), in the horizontal
position. The support structures are painted blue and the bending magnets orange. Photo courtesy
of Universitätsklinikum Heidelberg.

A beam line guides the particle bundle, again by way of electric and magnetic fields, towards
the patient. Some treatment centers have a gantry right before the bundle reaches the patient: a
rotatable beam line so that the bundle can impinge from different angles without having to move the
patient. Since the beam line components are heavy, even moreso when the bundle needs to bend,
which is the case in a gantry, such installations are usually very large (see fig. 1.13 for an example).
Many particle therapy centers therefore have fixed beam lines, which are cheaper, lighter, require
less space and are easier to calibrate, but require the patient to be repositioned if a beam must be
delivered from multiple angles.

Once the particle bundle exits the beam line, it must be shaped so that all particles stop exactly
inside the tumor. Shaping the beam is done in one of two ways: passive or active shaping (fig. 1.14).
Passive shaping is an older method, and is often used in combination with cyclotrons which output
particles with a single energy. A range shifter element decelerates the particles such the bundle now
consists of a spectrum of energy. A scatterer widens the beam and a collimator and a compensator
put the beam in its final shape, so that the tumor and only the tumor is covered. All these elements
are put in place and to deliver the treatment we only have to turn on the cyclotron and wait. Since
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Figure 1.14: The two concepts applied for beam shaping in particle therapy. On top: passive beam
shaping, which irradiates the full field at once. The beam’s energy and direction are manipulated by
inserting high-Z objects in the beam. The range shifter is a wheel that spins, and has a stepped or
continuous slope such that the beam is slowed down over a range of energies. The scatterer widens
the beam to a diverging bundle, such that we can cover the whole field of view at once. Sometimes a
second scatterer is introduced to provide a flat particle fluence, within a certain aperture. An optional
ripple filter can be present, in particular for particles with sharp BPs. A collimator is then used to
adjust the beam to cover the contours of the tumor. A patient specific compensator or bolus then
adjusts the range, so that in each position in the transverse plane the particles energy is tuned to stop
at the distal point of the tumor. On the bottom: active shaping. An optional ripple filter or range
shifter wheel may be present for the same reasons, and then a pair of magnets steer the bundle into
a certain position in the transverse plane. Note that this is an active process, so the tumor volume is
not irradiated at once, but point for point.
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these elements are high-Z elements (they adjust the trajectories of the particles), there are many ef-
fects that increase the uncertainties of the bundle position and energy. Optical effects such as chro-
matic aberration and interface effects such as the West-Sherwood effect occur, but also secondary
production in the elements, of which neutron production is the most problematic.
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Figure 1.15: The effect of a Ripple Filter on the range of 200MeV protons in water. Ripple Filters (RiFi)
are used to introduce artificial smearing of the BP for heavier ions: their Bragg Peaks are so sharp that
the number of energies that the synchrotron would have to deliver to provide a smooth SOBP would
be too great.

On the other hand, active scanners use magnetic fields to steer the beam and are always em-
ployed in tandem with an accelerator that can deliver the particles over a certain energy range. This
means most of the passive elements are no longer required to cover the tumor volume. For heav-
ier particles such as carbon, the ripple filter is often used as it is in passive shaping (see fig. 1.15).
An important difference with passive delivery is that in an active setup, the magnets can only steer
the beam into one particular position (it does not widen the beam), and the synchrotron delivers a
single energy at a time. This means the volume must be scanned over, both with the magnets and
synchrotron.

The typical dimensions of tumors are significantly larger than the typical width of the BP. As men-
tioned, the ripple filter is sometimes employed to widen the BP, but to reach across the full depth
of the typical tumor, multiple energies are required (each delivering ions at a certain depth as per
fig. 1.10). Therefore, peaks of various energies must be overlaid to scan over the full range of the tu-
mor. These different energies are obtained either by the synchrotron or by inserting slabs of meterial
as range shifters into the beam. This leads to the Spread Out Bragg Peak (SOBP), also known as peak
summing effect (fig. 1.16). The entrance dose is enlarged, making the apparent advantage of particle
therapy decidedly less pronounced. Multiple beams may help spread out this entrance dose, as is
done in X-ray treatments.

1.3.3 Particle species

Several ions are or have been considered for medical treatment: H, D, He, Li, Be, C and Ne. The upside
to heavier ions is less lateral scattering and an increased RBE compared to protons, predominantly
due to the nucleus being heavier and increased ionization respectively. The downside is fragmen-
tation: the debris stops before or after the Bragg peak and makes the dose deposition less accurate.
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Figure 1.16: In order to irradiate over the tumor volume, multiple hadron energies are summed. This
has the unfortunate side effect of an increased dose before the tumor, to healthy tissue. Plot produced
with Gate/Geant4.

This is compensated for by a local increase of the RBE in the BP region: the RBE may in fact be a func-
tion of the particles energy (Tommasino and Durante, 2015). Consensus over this effect has however
not been reached, which introduces a downside: the RBE increase translates to an effective biologi-
cal range extension. If the effect exists, and is not taken into account when creating treatment plans,
there is some dose deposited after the supposed end of the range.

TSome research has been done on pion radiation (Goodman et al., 1990; Wisser, 2004) that con-
cluded that the performance has no clear advantages nor disadvantages compared to protons or
carbon ions. Even less research has been performed on antiprotons which is summarized by Amaldi
and Kraft (2005) as having ’non-obvious advantages’. Both have one clear disadvantage: the produc-
tion of these exotic particles is costlier compared to normal matter. Moreover, evaluating the RBE of
such exotic species will be even more difficult than it already is for relatively ordinary protons and
carbon ions. Up to 2014, about 120k patients were treated worldwide with protons, and about 15k
worldwide with carbon ions, and no other species were used outside of research settings (Jermann,
2015). However, helium seems to reach a good optimum between fragmentability, reduced lateral
scattering, and a potential increase of RBE around the BP. These benefits with respect to protons
(Durante and Paganetti, 2016) lead to a renewed clinical interest in this particle species (Fuchs et al.,
2015; Krämer et al., 2016).

1.4 Monte Carlo tools

The physics in particle physics experiments and particle therapy are described by a vast and com-
plex body of models and data, each with their own assumptions and trade-offs. Naturally, physics
does combine all the processes underlying these models. A single particle slowing down under the
CSDA assumption is a relatively simple system, compared to the Sjoelbak physics referenced before.
When the multiplicity of all possible states of a system explodes, and therefore (analytical) modeling
complexity, MC tools provide a way out. Large experiments dedicate large efforts towards the tabula-
tion of probabilities or cross-sections of all possible interactions, and a Monte Carlo (MC) simulation
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Figure 1.17: Models of processes used during the simulation by Geant4 of 10 proton trajectories
through a box of water.

generates a particular history using random number generation and these probabilities (see fig. 1.17
for an illustration). In that context, MC tools provide a way to perform experiments, without the need
to put a patient at risk.

Some common MC packages in particle therapy are Geant4, EGSnrc, PENELOPE, MCNPX and
Fluka, upon which other tools such as Gate (Sarrut et al., 2014), Topas or custom tools may be built.
Most of them support various physics models (in Geant4 these are called physics-lists), each with dif-
ferent assumptions or based on different data, and with different tunable parameters. Various groups
use such packages and each have their preferences. Detector designers will appreciate the ease of
use of building geometry, while clinical users that verify treatment plans might care more about the
presence of user friendly interfaces. Simulation speed, always a concern, is different between the
packages, and can often be tuned by choosing certain physics models or limiting the physics to the
part that one is interested in. The latter is often controlled with physics or production cuts: rather
than removing parts of physics outright (for instance: in photon simulations usually only electro-
magnetic interactions are needed for correct estimates of dose), a threshold determines whether or
not a particle is created or the energy that would have gone into that particle is simply registered as
’deposited’. People interested in dose calculation, might chose to save time by not generating and
propagating secondaries for instance. When a so-called rare process is the interaction of interest,
variance reduction methods can be employed: it reduces the variance for any given simulation with
respect to the regular or so-called analog simulation. As a simulation runs, the output converges,
which is to say: its variance reduces. A common measure to ensure sufficient convergence is to re-
quire that the uncertainty σ associated to the quantity of interest is not more than 2% of the signal.
A variance reduction technique then translates into reaching the threshold faster, and therefore a
gain with respect to analog MC. For photons, such methods are abundant, helped by their relatively
simple physics.

Even though the goal of every MC package is to converge on the same physics, each package may
produce different results, and also the choice of physics(list) and productions cuts will influence
results. While such packages are continuously updated, adjusted, validated and compared (Dedes
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et al., 2014; Pinto et al., 2016; Robert et al., 2013), the user has, certainly in clinical applications,
the duty to know about these differences and know which packages or physics are suited for which
application. Most packages have recommendations based on the purpose of the simulations.

1.5 Summary

At this time particle therapy is a well established modality for treating solid tumors that is seeing a
rapidly expanding number of facilities worldwide. The theoretical benefits over X-ray treatment have
been largely confirmed for pediatric cancer, and are currently being assessed for other cancers, as
evidenced by an increasing interest. The biological effects of particles impinging on patients tissues
would benefit from further study. There are currently no clinically established ways of observing the
particles directly or indirectly during treatment, which stresses the importance of quality control and
a solid understanding of the behavior of protons in patient tissues.
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Chapter 2

Uncertainties

A challenge in EBRT in general and particle therapy in particular is developing our understanding
of how radiation affects tissues, how radiation may be applied in the right places, and not in the
wrong ones, and which side-effects are unavoidable or how they may be minimized. Robust and
successful treatment and patient survival are the goals, but must be broken down into the multitude
of factors influencing it if we are to improve the way we treat cancer. Figure 2.1 is a rough summary
of the uncertainties encountered in proton therapy and categorizes their severity in descending or-
der. The order of causes is different for different particles; for carbon therapy the uncertainty due to
RBE would be higher for instance. In this section I will deconstruct the EBRT workflow and investi-
gate the uncertainties in each part, and I will mention current and future strategies to handle those
uncertainties.

Beam energy (σ)

Patient positioning (σ)

CT uncertainties (Σ)
such as beam hardening, calibration

Distal end RBE enhancement (Σ)

CT artifacts (Σ)

Variations in patient anatomy (Σ,σ)
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Figure 2.1: The Bermuda Triangle of Uncertainties, as presented by Tony Lomax at the Hadronther-
apy School at CNAO, 2014. Σ refers to systematic uncertainties and σ to statistical effects.

2.1 Clinical workflow EBRT

Different types of tumors have different types of symptoms, and those will not be discussed here.
Once symptoms are reason enough for a doctor to suspect the presence of a tumor, a computed to-
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mography (CT) scan is one of the default diagnoses performed. If it is determined EBRT will be (one
of) the treatment modalities, a planning CT is made. Based on this, clinicians use software to pro-
duce a treatment plan (TP) which is then applied to the patient. Depending on the progression of
the treatment (side-effects may develop, other observables may indicate a deviation from the TP) the
treatment may be altered, although this generally is an exception. At certain stages of the treatment,
intermediate images may be made, usually Cone Beam CT (CBCT) images. Such images, and other
diagnostics such as blood tests and physical exams, may lead to a change or interruption of treat-
ment, although the latter is exceptional. Such modified treatments based on observations during
treatment are categorized as Adaptive Radiotherapy (ART).

Imaging Planning Treatment

Figure 2.2: Clinical workflow in EBRT. In some cases, when clear and significant morphological
changes in the patient have been established, a new image is made, upon which a new treatment
plan is prepared and executed in the remaining treatment fraction.

The workflow for EBRT from a bird’s eye view is show in fig. 2.2. For each component, various fac-
tors introduce uncertainties, the major ones will be elaborated upon in the remainder of this chapter.

2.1.1 Imaging

Various modalities exist for intra-body probing. Magnetic Resonance Imaging (MRI), Ultra Sound
imaging (US), radioactive tracers visible using Positron Emission Tomography (PET) or Single Pho-
ton Emission Computed Tomography (SPECT) imaging exist. However, the oldest method is radiog-
raphy, refined into Computed Tomography (CT), and has the added benefit that it probes using the
same particles (photons) as almost all EBRT treatments (X-ray). Clinical practice is therefore, without
exception, the creation of a high resolution high accuracy CT image, on which Treatment Planning
Software (TPS) will compute the best treatment for the criteria entered by a clinician. A CT scanner,
also referred to as computerized axial tomography (CAT) scanners, shoot a bundle of photons, usu-
ally in the 100 keV range, through a patient and behind the patient measure the transmission, from
which absorption (or attenuation) can be obtained through Beer-Lamberts law:

I = I0e−µx (2.1)

where I is the transmission, I0 the emission, µ the mean linear attenuation coefficient (over the
beam energy spectrum) of the target and x the traversed path in the target. A side effect of X-rays
in matter is beam hardening: low energy photons are absorbed by the patient, effectively increasing
the mean beam energy as the beam traverses matter. This can be corrected by pre-hardening the
beam with metal filters or with post-processing on the measured data, each with their own added
uncertainty.

Since µ is material-dependent, one single acquisition only shows the cumulative effect of the
various materials that happened to have been in the photons path. Remember that obtaining a three
dimensional image of the patient, thus of the different tissues and materials is the goal. A CT scan is
then a sequence of radiographs, under various angles θ about the patient, at various positions along
the patient. The radiograph data is usually organized so that at each position z along the patient, for
each θ a 1D line radiograph, over the other spatial dimension of the camera t remains, facilitating a
slice-wise or helicoidal reconstruction (see fig. 2.3). For each slice, at position z, the 1D radiographs
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can be composed into a 2D image of axis θ and t . These images are called sinograms, and they
are the starting point for most reconstruction algorithms. The end goal is 2D maps of attenuation
coefficients, at each z a transverse slice in coordinates x and y .

θ

tz

y

Figure 2.3: Data from a series of CT acquisitions is reordered into sinograms. Illustration adapted
from material by Irène Buvat.

The sinograms have values at each pixel, and various reconstruction methods map this back into
values in the (real) x and y plane. Some of these methods include Iterative Reconstruction Algorithm,
Fan-Beam Reconstruction and perhaps most popular the (Filtered) Back Projection Algorithm (FBP).
Since the number of angles is limited, the number of back projections is as well, and the image may
appear streaked, and the filter in FBP takes care of that. Once each slice is reconstructed, they may
be put together for a 3D image.

Since the voxel sizes are fixed, µ in eq. 2.1 may be obtained for each voxel, and thereby the ma-
terial present at that location. µ conveys information of both density and material type, and for
convenience these values are rescaled to Hounsfield units:

HUx = µx −µw ater

µw ater −µai r
×1000 (2.2)

The Hounsfield Unit (HU) or CT number is derived from the linear attenuation coefficient µ of
photons in matter. The HU is defined in eq. 2.2, such that µw ater = 0 and µai r = −1000, bringing
most clinical materials into a [-1000,1000] window (dense bones or metallic implants may have a
significantly higher HU-index). It is a convenient scale for CT imagery, because the HU is, modulus
the rescaling, describing the direct observable µ, a material property that is also used when photon
treatment planning is performed. For particle therapy the relevant quantity is not µ but the stopping
power. Since images on which treatment planning is being done are CTs anyway, these HU indices
must be converted, to particle stopping power.

2.1.2 Planning

Now that patient data is obtained, a treatment can be devised. Clinicians start by drawing contours
on the CT image: delineations of particular biological structures such as the tumor, certain organs,
in particular the radio-sensitive organs (AORs) and the patient outline (the surface of the skin). Usu-
ally, contouring is done slice by slice, and a 3D surface is interpolated. Contouring may be aided
by software that auto-contours easily detectable features such as the patient outline. A final review,
with (small) alterations if necessary, is performed manually. Occasionally data from other sources
such as PET or MRI scans are overlaid to aid the contouring process. An important note here is that
in particular for the tumor margins are added. The visible tumor contour is called the Gross Tumor
Volume, or GTV. Because imaging has resolution limitations and in particular contrast limitations,
the tumor may be in fact larger than what can be seen. A margin of up to a centimeter wide is added,
creating the Clinical Target Volume (CTV), which also helps ensure that cells that diffused away from
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the tumor are treated. Then, to deal with technical limitations of the treatment delivery, patient po-
sitioning and motion, and uncertainties in planning, a second margin is added to arrive at the PTV
or Planning Target Volume.

Once the contours are in place, a prescription is defined according to current protocols and clin-
icians’ input. For some tissues a minimum or maximum mean dose is defined. Certain organs, so
called parallel organs, can tolerate a higher dose as long as this high dose is confined to a certain
fraction of the organ so that the remainder survives and can (partially or fully) compensate for the
damages caused in the high dose part. Conversely, serial organs do not exhibit such intra-organ re-
dundancy and if such organs are radio-sensitive, they must be kept under their limit over their whole
volume. In case of severe radio-sensitivity, of which nerves are the canonical example, the organ may
be classified as an AOR.

Certain field or beam directions may be preferred, and for particle treatment the presence of a
gantry or number of fixed beams affect the possibilities for the TP. Another factor is the number of
fractions: the number of days the patient will return for treatment. A typical total dose to the PTV
is 60 Gy, and often this is spread over 30 days so that each day a 2 Gy fraction is delivered. These
constraints serve as input for a dose optimization procedure: an algorithm that will find a particular
set of fields with field contours, and energy layers in the case of particle treatments, that best match
the prescription. Such TPs are analyzed by clinicians using dose contours overlaid on the CT data or
Dose Volume Histograms (DVHs) such as in fig. 2.4. Of course, the optimization procedure itself is a
source of uncertainty, there are better and worse, and faster and slower programs.

Figure 2.4: Dose Volume Histograms show for selected contours the fraction of the volume covered as
function of the dose. The PTV should reach at minimum its prescribed dose in nearly all of its volume,
while for organs at risk such as the Cochlea, the maximum allowed dose must not be exceeded in all
of its volume. Other organs can tolerate a bit more, and in such a diagram it can be seen how much
(extra) dose these organs receive. Image CC-BY licensed by Wikipedia Authors.

Besides the CT image, contours and prescriptions, the TPS requires an additional bit of informa-
tion: the beam description. Be it an X-ray machine or a proton synchro-cyclotron with a scanning
nozzle: the precise possibilities and tolerances of the system must be known to the TPS for it to gen-
erate the best possible TP. For particle treatments, it is usually the nozzle and available energies and
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their tolerances that are known, including scanning speeds and energy switching time. Not only must
this model be available to the TPS, they must be well established and monitored as time goes by. The
beam delivery system requires regular and well specified Quality Assurance (QA) testing: not only are
HU-units tested with a waterbox, the particle’s energy and positions must be measured, as well as the
tolerances. The main job of a clinical physicist is to monitor and chart these properties, so that the
system conforms to the beam description that the TPS has, ensuring as few differences as possible
between treatment plan and treatment delivery.

2.1.3 Treatment

Figure 2.5: Radiation Therapy Head Mask. Patients getting radiation to the head may need a mask.
The mask helps keep the head from moving so that the patient is in the exact same position for each
treatment. Image released in the public domain by the United States government at cancer.gov.

When a patient is treated, the setup, which includes the beam and the patient, must conform to
the models as were present in the TP. Clinical physicists make sure the machine is aligned, within
tolerance, and so on, and are responsible for the setup of the patient. In particle therapy, molds are
often used to fix the body and in particular the body part affected by the treatment in position. For a
head and neck treatment, a mask as seen in fig. 2.5 is common. While not very comfortable, with par-
ticle therapy, precise alignment has become much more important due to the sharper dose gradients
compared to X-ray treatments. Typical tolerances are 3 mm translations and 3 degree rotations. The
TPS takes such tolerances into account, of course at the cost of a lack of accuracy of the treatment.
For some regions of the body, temporal changes greatly affect the type of margins built-in to the TP.
4D planning is an area in development, where motion tracking or compensation is incorporated in
the TP and helps reduce these margins. For instance: a lung tumor may be imaged and more wellde-
fined when the patient has exhaled, but of course when inhaling the tumor may be centimeters away
from the imaged position. The simplest form of 4D planning is gating: simply switching the beam
on and off synchronous to the breathing motion of the patient. While conceptually simple, interplay
with the time dependence of beam scanning is far from trivial.
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2.2 Commissioning, Quality Assurance

As is clear now, the act of treating patients relies on a large set of complex machines operating accord-
ing to known or defined specifications. The TPS has a beam description, reads the patient planning
CT and associated contours and prescription, and produces a list of lateral beam positions as func-
tion of energy as output. But also the position of the patient is controlled during treatment. When a
new particle therapy center is built, the commissioning phase is a full systems check of all systems
involved in executing the treatment. The commissioning may include:

• commissioning of delivery system
• verification of dose distributions
• mechanical alignment (gantry, couch, snout, ...)
• imaging equipment
• TPS
• collection of beam data
• verification of calculation algorithm
• simulation equipment
• Hounsfield to stopping power calibration (CT)
• milling machine (to create patient specific boluses)
• apertures and range compensators
• immobilization devices (such as the head mask)
• beam perturbation

Once in operation, regular checks are performed to ensure systems remain within their defined
tolerances. This is called Quality Assurance (QA). Through continuous research and development
tolerances are improved every iteration of a (sub) system, but they remain inherently present. The
way to deal with tolerances, or uncertainty, is to add various margins to the contours in the image
data. A larger volume than required is irradiated, to ensure any movement, misalignment, variation
or patient morphological change does not lead to the GTV being outside of the irradiated volume.
This comes at the cost of irradiating healthy tissues that surround the GTV (fig. 2.6).

Figure 2.6: The specified uncertainty on a proton pencil beam range at the Massachusetts General
Hospital in 2015 was a 3.5% + 1mm as a function of the range in water. The uncertainty is dealt with
by adding margins to tumor contours resulting in the PTV. Commissioning establishes this curve, QA
ensures its correctness in subsequent treatments. Source: Verburg (2015).
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2.3 Physics and Biology

As said in the introduction to this chapter, EBRT is about putting the right dose in the right place. Dose
has been introduced in the introductory chapter as a way to quantify damage, and in this section the
uncertainties that arise from the way dose is quantified will be discussed.

2.3.1 RBE

Since particle therapy inherits many of its clinical practices from conventional radiotherapy, some
out of necessity, some out of habit, it seems fair to say that particle treatments are decidedly photon
oriented in their construction. Planning image data is always obtained with a CT, and the concept
of RBE relates dose induced with non-photonic modalities (effective or biological dose, eq. 1.6 on
page 11) to dose induced by photons (physical dose, eq. 1.5 on page 11). In fact, even the physical
dose photon dose equality is being questioned Liang et al. (2017). Briefly recalling the RBE section of
the previous chapter, dose is a measure of damage, and based on the transfer of energy (LET) from
the primary particle to the patients tissues. Using cell survival studies, the damage relative to the
photon dose is calibrated by adding a factor for the RBE.

The computation of the RBE is performed by comparing the cell survival for a given LET, which in
the case of proton radiation means the proton energy, with a reference, X-rays. If 1.0 Gy was required
to kill 80% of the cells using X-rays, and 0.8 Gy using 140 MeV protons, then the RBE for 140 MeV
protons, for that cell type, is 1

0.8 = 1.25. The RBE for proton therapy is set at a constant 1.1 in almost
all clinics worldwide, and this 1.1 is the average RBE in the mid-SOBP region of various studies, with
various in-vivo measurements, with various proton energies (Paganetti et al., 2002). There are two
problems with this. Based on the same data presented in those studies, we know the variation is
systematic: different cells have different radiosensitivities, and averaging their RBEs does not make
sense from a biological point of view. Secondly, it is widely accepted that proton energies have very
differents LETs (fig. 2.8). That means that the RBE for x MeV protons is not related to the RBE for
y MeV protons. Averaging makes no sense from a physics point of view. Note that the proton loses
energy until it is stopped, which means the LET depends on the position in the patient. Moreover,
since the SOBP is made up of various primary proton energies, any region except the most distal will
undergo dose deposition by protons of a range of energies, therefore a range of LETs. The original
point of inventing the LET was to remove the statistical fluctuations of the discrete energy transfers
that a particle traversing matter experiences. LET fundamentally varies with the energy and therefore
range of the particle. As far back as Rossi (1959) assuming LET constancy was known to be incorrect.
The evidence for RBE variation notwithstanding, for protons the variation of LET with energy has
been considered weak enough to ignore it (Coutrakon et al., 1997) and the RBE remains at a constant
1.1.

For carbon, the change in LET along the path is too much to ignore (see fig. 2.7), and here mod-
els more complex than RBE=1.1 are in clinical use to compute the biological dose. As mentioned
in the previous chapter, two main families of models may be distinguished: various version of the
Local Effect Model (LEM) in European particle therapy centers and semi-empirical models based
on the Zaider–Rossi approach in Japanese centers, sometimes called the NIRS approach (Fossati
et al., 2012). More recently, the mMKM (modified microdosimetric kinetic model) and NanOx (NAN-
odosimetry and OXydative stress) models were developed (Cunha et al., 2017), seeking to further
increase the predictive power and correct estimation of the actual biological damage. In Molinelli
et al. (2016) NIRS and LEM are compared, and since the predicted biological doses are different and
both models are clinically applied, we must conclude that at this time there is no agreement on what
the biological dose for carbons is. An updated version of LEM predicts a significantly different RBE
at the very end of the Bragg Peak for protons, resulting in an effective range shift of a few millimeters
(see fig. 3.16 on page 53), which is why people have been calling for an update to the proton RBE as
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Figure 2.7: Physical (dashed) and biological dose (solid) of a carbon beam. Source: Inaniwa and
Kanematsu (2014).

well (Paganetti et al., 2002). Figure 2.8 aggregates many RBE studies in one graph. It is clear that the
RBE is a complex function of many parameters, such as radiation quality, dose, dose rate, biological
endpoint, cell type and cell cycle stage, and that one constant value may be too much of a simpli-
fication. After all, more accuracy and precision means that margins can be eventually lowered and
improve the quality of treatment.

Figure 2.8: RBE compared with LET from published experiments on in vitro cell lines. Different
colours indicate different ions, from protons to heavy ions. Source: Loeffler and Durante (2013)

2.3.2 Conversion to Stopping Power

When it comes to Hounsfield to stopping power conversion, every particle center builds a conversion
curve as part of commissioning. The Hounsfield unit is centered on water, thus the stopping power
in water is the elementary ingredient in the commissioning of a new center. Depth-dose profiles for
all spots and all beam energy levels are meticulously measured with a peak-finder, and fed into the
TPS’ model of a pencil beam, the dose kernel. Then, for certain materials a Water Equivalent Path
Length (WEPL) is measured by inserting slabs of various thickness of the material in the waterbox.
The shift in BP is then a measure of the WEPL, that can be translated into a Relative Stopping Power
(RSP) or Stopping Power Ratio (SPR). In figure 2.9 such curves are shown, and using these the path
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length of particles can be computed in all voxels of a CT image, and so a correct treatment produced.
In clinical practice this procedure is thus quite experimental.

Figure 2.9: RSP-HU calibration curves for X-ray and proton CT scanner simulations. For the X-ray
CT, linear interpolation (left) and a two linear functions fit (middle) are shown. For comparison,
on the right a proton CT conversion curve where a single linear function suffices. The choice of
interpolation influences the precise conversion of soft tissues the most. Source: Arbor et al. (2015)

The use of the dose kernel, where a relatively simple analytic model about beams is calibrated
with measurements, together with the idea that different tissues introduce nothing more than a sim-
ple shift, is a direct carbon copy of X-ray procedures. To the physicist’s eye it may be a bit painful to
see the liberties with reality being taken, and while they may seem appropriate for X-ray treatment,
to some it might seem a miracle particle treatments already work as well as they do. Chapter 26 of
(Mayles et al., 2008) discusses the various dose kernels in use, the so-called analytic models, while
chapter 28 of the same book summarizes work being done on the use of Monte Carlo (MC) tools in
predicting the dose and its distribution. MC simulation may be performed to validate analytic mod-
els used in TPSes (Paganetti, 2012; Verburg et al., 2015). From a physics perspective MC might seem
the most correct way to study ionization and dose deposition, because it models the fundamental
physics down to each individual interaction. However, as of today this is still too time consuming to
execute for each daily clinical practice.

Analytical methods to predict stopping powers exist and assume that, since electronic stopping
dominates the particle’s deceleration in all but the last millimeter, the relative electron density (RED)
is usually taken as equal to the RSP, certainly in TPS. However, this is an oversimplification as a cor-
rect definition would involve a factor involving the logarithm of the ionization potential I, see eq. 9
in (Yang et al., 2010), which is almost but not quite the same for different materials. The factor comes
from Bethe’s equation in 1.3, so an analytical estimation of the RSP can be produced using the elec-
tron density and ionization potential of a material, as was presented in (Schneider et al., 1996). Clin-
ical practice tends to favor conservative margins because many uncertainties are not well known,
while good modeling and better measurement may reduce uncertainties and thereby margins.

General CT improvements are being developed, such as dual energy CT. In dual energy CT the
radiograph is acquired at two (and possibly even more) photon energies, leading to two attenuation
coefficients per voxel. Since µ is a convolution of density and material, and will be different for dif-
ferent photon energies in different materials, having this second data point leads to more confidence
that the correct material is inferred (Hudobivnik et al., 2016; Vilches-Freixas et al., 2016).

One aspect of X-ray radiographs has not been discussed yet, and that is the quite terrible contrast
with soft tissues of the human body. Moreover, the Hounsfield to stopping power calibration is most
uncertain here. Dual energy can help, but the MRI modality provides excellent contrast of soft tissues.
Work is being done to improve the CT with data from an MRI image, possibly eventually replacing CT
altogether (Lagendijk et al., 2016). Moreover, with adapted equipment, MRI imagery can be acquired
during X-ray treatments, providing an opportunity for real-time beam re-positioning.
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Figure 2.10: The top image shows a proton beam image and the bottom image shows a standard X-
ray scan. Note the missing features in the X-ray image and the difference in sharpness. Because of the
lateral scattering, the edges in the proton images are not as sharp as with the X-ray. Image courtesy
of Ryu et al. (2008).

Protons exhibit a greater soft-tissue contrast compared to photons, as seen in fig. 2.10. Proton CT
was originally proposed because of this (Hanson et al., 1981; Koehler, 1968; Wilson, 1946); after all,
most of the human body is made up of soft tissue. Because a proton beam is required and such facil-
ities have only become available outside of research contexts in the last one or two decades, the idea
did not gain much traction until then. Since the conversion between the modalities can be avoided
by making radiographs with the same particle as the treatment, proton therapy lead to a return of
interest in proton CT (Amaldi and Braccini, 2011; Benedikt and Wrulich, 2011; Rietzel et al., 2007;
Rossi, 2011; Schardt and Elsässer, 2010). With proton CT, on top of the enhanced soft-tissue contrast,
the stopping power is directly observed, instead of µ. After detection comes reconstruction, and col-
leagues have been working on reconstruction methods tuned for proton CT (Arbor et al., 2015). In
Quiñones et al. (2016), proton energy-loss CT and proton count attenuation CT were compared, as
well as the effects of various scatter corrections investigated, which is a significant difference with
X-ray CT. Proton CT performs worse in the transverse plane and better in the longitudinal direction,
so combining photon and proton data into a single CT is currently being investigated (Krah et al.,
2016).

2.4 Treatment delivery and planning

Now that we have seen what dose is, we must know where to deposit it. It is a good time to note
that with respect to X-rays particle treatment planning has an extra degree of freedom: the particle’s
energy, which governs its depth. The type of beam determines much of which type of planning is
possible. Passive beams require a very different type of planning, and has as output not a list of spots
with their positions and energies but only a list of energies and a patient specific bolus. The industry
seems to have decided that the higher (commissioning) cost of active beams is worth the clinical
benefit of less scatter and neutron dose due to fewer absorbing materials in the beam. So, here I will
discuss treatment planning for scanned beams, which is entirely software-based.

Depending on the gantry and number of beams, various types of treatment optimization exist:

Single Field
• Single Field Optimization (SFO) or Single Field Uniform Dose (SFUD) planning.

Per position in the transverse plane, the particle energies corresponding to the proximal and
distal edges of the tumor are computed. Per position, between these energies, a SOBP is created
resulting in a uniform dose distribution that aligns with the dimensions of the PTV.
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Multiple Fields
• Multi Field Optimization (MFO)

Each beam delivers a certain fraction of the total dose and each is optimized as in SFO. For
instance, in a two-field plan each beam could be an SFO delivering a uniform 1 Gy dose across
the PTV.

• Intensity Modulated Proton Therapy (IMPT)
In IMPT each beam spot delivers an independently computed dose. No uniformity within a
beam is enforced, and the ratio between the beams is not enforced either. All depends on the
choices made by the optimization algorithm. IMPT is considered to provide the most confor-
mal treatment plans to date (Durante and Paganetti, 2016; Fossati et al., 2012), at the cost of
being less robust. Sometimes this is called unbalanced optimization.

In broad terms, robustness is improved when variations are suppressed. The latter can be achieved
by knowing the variations better (e.g. better imaging, better motion tracking, better understanding
of the RBE) or by reducing the interplay between multiple fields by reducing their number, accepting
less conformal planning by planning with wider margins. Also the choice for the spot number intro-
duces a consequent effect on robustness and precision. If you want uniform dose, and your means
of doing so is to place dots, with arbitrary precision and size, and the delivery time of a single spot
is constant, it follows that smaller dots equals more uniform and conformal dose distribution, and
bigger dots faster treatment and a higher robustness to variations. Faster treatment means more pa-
tients treated in a day, which can be translated to a lower cost of therapy. In addition, patients are
usually stabilized, which is not comfortable for longer periods of time. So, a choice like this depends
on the clinical tolerances for a particular patient. As will be demonstrated in a later chapter, for pe-
diatric cases the extra precision of more and smaller spots is worth the increase of treatment time.
To enable smaller spots, nozzle designs are improved so that a finer beam position grid is possible.
In addition, non-isocentric planning is investigated, where the patient is moved close to the nozzle
(Grevillot et al., 2015).

In multifield treatments, uncertainties can have unexpected interplay effect. In opposing beam
scenarios, in-axis set-up errors do not matter, while perpendicular misalignment does. Perpendicu-
lar beams will be sensitive to error in either direction. This means that there is a choice in treatment
planning: trade-off between robustness and conformality (McGowan et al., 2015). Clinical practice
at HIT in Heidelberg is per-field homogeneous dose (single field optimization), so that if there is an
error, the second field can not be irradiated while still having a (more or less) known uniform dose
distribution from which a new plan may resume. At CNAO prostate is treated the same way. CNAO
treats all other cases with IMPT, and when using protons, a single field is preferred whenever possible.
European and US centers tend to use homogeneous multifield planning while in Japan inhomoge-
neous fields are the norm. It appears there is no consensus on the best trade-off.

A treatment is broken up into sessions or fractions, because it was observed that this improves
the ability of healthy tissue to recover (Mayles et al., 2008, Chapter 9). There are practical and bi-
ological reasons for this. Delivering 60 Gy at once would require a patient to lay still, fixed to the
treatment table, for at least half an hour. Moreover, healthy and cancerous tissues have different
radio-sensitivities. Tumors’ main characteristic is that they are deregulation tissue, which brings one
advantage to the fore: they are more radio-sensitive because their deregulation makes recovery from
damage less likely. Fractionation is then a way to give healthy tissue time to recover, while tumors
do not recover (as much) in the time between fractions. For different types of tumors, different frac-
tionation regimes are customary, and they are related to the α and β in the survival studies of the
previous chapter, and sometimes α/β is referred to as the fractionation factor (Mayles et al., 2008,
Chapter 55.2). Hypofractionation, fewer higher dose fractions, is performed for lower α / β ratios. In
certain cases, even single fraction treatments have been performed. Karube et al. (2016) presents the
results of single fraction treatments for the elderly, whom may be inconvenienced more than usual
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by frequent visits to the clinic. The life expectancy of older patients means the effects of complica-
tions in healthy tissue may never be felt. Closely related to fractionation is the dose rate: how fast the
treatment is delivered. The ’saturation’ effect that α and β imply, are valid on shorter timescales as
well. Different dose rates can be translated to different RBEs, depending on the tissue (Wozny et al.,
2016).

Some other innovations in clinical treatment delivery are the use of heat (Yarmolenko et al., 2011)
and non-uniform dose planning. Sometimes called dose painting, certain regions of the PTV may
receive a boost, which is to say an increased dose to ensure destruction of possible stem cells respon-
sible for seeding the tumor (Shi et al., 2014). Mixed modality boosted treatments are also considered,
where a normal X-ray treatment is supplemented by a proton boost (Hopfgartner, 2008). Radiosen-
sitive nanoparticles that amplify the ionization are a topic of much interest (Haume et al., 2016).

2.5 Adaptive Treatment

Figure 2.11: Schematic view of the effect of organ displacement. Iso-dose lines are drawn to demon-
strate the effect. Margins are added to mitigate the effect at the cost of extra dose to healthy tissue.
Spiky extrusions in iso-dose lines are sometimes referred to as dosefingers. Image courtesy of Pa-
ganetti (2016).

Even though many kinds of deviations are known, described, measured and taken into account,
in regular treatments nothing is actually known: QA is how margins are established, not the measured
position of the particular patient currently being treated. The dotted line in figure 2.2 on page 22
can, for a large majority of treatments, be left out. Relatively new are attempts to monitor certain
uncertainties during treatment instead of fixing their state and adding margins. Looking back at
figure 2.1 (page 21), patient change is the major component in the uncertainties of particle therapy,
see figure 2.11.

Temporal changes can be distinguished based on their timescales: day-to-day changes are called
inter-fractional change and changes during a treatment session is intra-fractional change. The var-
ious motions of the body are intra-fractional changes, while setup error and organ filling (bladder,
bowels) change the treatment between fractions. Organ filling can be dealt with by requiring the
patient not to eat a number of hours before the treatment, or to require the patient to urinate right
before the treatment. Instead of forcing the state known to the TPS onto the patient, which may be
difficult for certain patients, in Adaptive Radiotherapy (ART) a more flexible approach is taken. For
instance, a tumor near the bladder may be dealt with by modifying the planning CT into various

32



stages of organ filling: the planning CT happened to be taken at 50% filling then generates CTs at 0,
25, 75 and 100% filled bladders. For each, the same prescription is used to generate a TP and every
day a "plan of the day" is chosen based on the present filling seen on a CBCT made right before treat-
ment. It makes the treatment more accurate and allows the patient to be more comfortable, at the
cost of having to make a daily assessment of which version of the TP to irradiate. In more advanced
ART, the CBCT itself may be used to obtain a "PTV of the day" (Burridge et al., 2006). Naturally, the
software performing the CT-CBCT registration and image deformations to obtain the image at vari-
ous fillings introduce their own uncertainties. Also, the treatment itself is not delivered instantly, and
therefore the time effects may be different from region to region (fig. 2.12). In the concept of thera-
nostics, the nanoparticles mentioned in an earlier section are used to both enhance localized dose
delivery and motion tracking: the particles will emit electrons when irradiated (Haume et al., 2016;
Retif et al., 2015). If the beamline has a combined treatment and imaging nozzle, this enables therapy
and diagnostics simultaneously.

Figure 2.12: The interplay between pencil beam scanning and organ motion jeopardizes the dose
distribution. (A) A lung tumor treated with beam scanning assuming no motion. A uniform dose
is delivered to the clinical (CTV) and planning (PTV) target volumes. (B) the actual dose distribu-
tion caused by patient’s breathing. Image courtesy of Prof Christoph Bert, University of Erlangen,
Germany.

2.6 Detectors in particle therapy

Currently, the PET scanner is the only tool used for clinical particle treatment verification, in a limited
number of particle therapy centers. The PET scanner was originally designed to image radionuclide
absorption. β+-emitting isotopes are coupled to a molecule that is absorbed in certain structures
and would make the location of absorption show up in the PET scan. The emittedβ+ recombine with
an electron, and emit two back-to-back photons with a signature 511 keV. Cameras must be able to
detect the coincidence to be certain the photon originated from positron annihilation and therefore
must be opposite each other. Having a full ring, or two opposing ring-parts, facilitates recording the
photons, leading to the characteristic shape of PET scanners.

Particle therapy itself induces production of isotopes, so some activation of the patient’s tissues
are a natural byproduct of the treatment. It therefore makes sense to utilize this by scanning the
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patient after treatment: a direct signal of the primaries’ paths can be imaged. The activated target
nuclei have a certain relaxation time, which means there is a time window between treatment and
PET imaging: after one or two half-lives have passed, no useful signal may be expected anymore. The
most common sources of β-emitters are 11C, 15O, 10C, with half-lives of 20 min, 2 min and 19 s re-
spectively (Kraft, 2000). In addition, biological processes displace the excited nuclei, for instance by
blood flow or cellular metabolism. This ’washout’ effect together with the half-lives limit the imaging
window to between 5 and 20 minutes after treatment. Usually the PET scanner is in another room,
or even another wing, which leads to a rather impractical workflow with limited results. If the pa-
tient cannot go the PET scanner, the PET scanner must go to the patient: in-room PET scanning is a
way some particle treatment centers minimize the large time window between treatment and imag-
ing. Integrated PET systems in the particle delivery gantry enable PET verification immediately after
treatment, without requiring setup position and related errors and loss of time (Enghardt et al., 2004).

2.7 Summary and outlook

Currently dealing with uncertainties prevents the full potential of particle treatment from being real-
ized. Exploiting the great precision of particle treatment is a balance between robustness and tissue
sparing. The main challenge is that dose is not observable, and certainly not in real-time during clin-
ical treatments. However, a particle treatment can be regarded as a fundamental physics experiment,
where by good modeling of the interactions, the target, the beam, a detector, and secondaries may
be used to deduce relevant quantities as the treatment has been or is being conducted. This way of
gathering treatment feedback enabled by simulation is crucial for comparisons between expected
and measured signals. Proton CT may help in removing conversion errors from the treatment plan-
ning workflow. Adaptive Radio Therapy seeks to combine measurements with improved treatment
planning, and new methods such a theranostics seek to expand the increased precision by ensur-
ing the dose is localized and tracked during treatment. Because particle treatments are less robust
with respect to X-ray treatment, monitoring and eventually control are pertinent to reducing margins
while improving the robustness at the same time.

An evolved notion of ART is IGRT, Image Guided Radio Therapy. IGRT takes it a step further:
imaging, of some sort, could be normal procedure for any treatment. This requires imaging devices
in the treatment room. Portal Imaging (van Elmpt et al., 2008) or EPID dosimetry (Rozendaal et al.,
2015) are implementations where the X-ray absorption is measured during treatment, and thereby
some information of where dose was deposited is reconstructed. For particle treatments, in-beam
PET (Dendooven et al., 2015) is a way to image the activation of tissue during or immediately after
treatment. While fragmentation is usually seen as a disadvantage, Kraft (2000) describes it in the case
of carbon ions as a potential advantage: typically β+ emitting 10C and 11C are produced that could be
used for direct verification with a PET scanner. Online MRI guidance is seeing a lot of interest in the
X-ray therapy community (Lagendijk et al., 2016), and some in silico studies demonstrate it is feasible
in particle therapy as well (Hartman et al., 2015). Early stage work is being done on neutron-imaging,
a natural byproduct of particle treatment and therefore no additional dose in imparted on the patient
(Valle et al., 2016). Tracking secondary protons (Henriquet et al., 2012) in heavy ion therapy is under
investigation. The aforementioned integration of PET in the delivery gantry led people to speculate
that PET imaging during treatment might be feasible (Parodi et al., 2005), and a few years ago the first
in-beam PET acquisition during a full beam was presented (Sportelli et al., 2013).

In the next chapter, another natural byproduct of particle treatment that may be imaged will be
discussed in detail: Prompt Gamma rays.
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Chapter 3

Prompt Gamma detection

3.1 Prompt Gamma physics

This chapter will detail the state of clinical Prompt Gamma (PG) applications. As mentioned in chap-
ter 1, PGs are photons released in nuclear interactions between the incoming and secondary parti-
cles and nuclei in the target. Figure 3.1 shows how (physical) dose and PG production correlate, for
a single spot in a simulated clinical proton treatment. The correlation is evident. Perhaps the most
significant difference is the end of the signal: if we define the Fall-Off Position (FOP) as max - baseline

2
(see fig. 3.2), then the PG FOP is about half a centimeter before the dose FOP for this distal spot.
Under influence of the primary energy and target material composition, the penetration depth and
therefore the FOP will change. PGs are produced in nuclear interactions (fig. 3.3), but only if the in-
cident particle has enough energy. At the distal end, the primary has only a few MeV left and that is
not enough to both overcome the electric potential and produce fragments such as a PG, hence the
difference in PG and dose FOP. Since the PG is produced in a nuclear interaction, the time delay be-
tween primary-target ion interaction and PG production is much below 1 ns, and originates directly
from the particles path. PGs are thus a very good indicator of primary tracks and that is why they are
a topic of investigation.

A general rule of thumb is that for 10 cm range in water, a proton has ≈ 10% chance to produce
a PG and a carbon-ion about ≈ 40%. On clinical phantoms with clinical proton plans, I observe
production factors between 3-10%. Figure 3.4 shows the PG production for 100k primary protons
in Geant4, broken down by the multiplicity of the PG production number. About half of the nu-
clear interactions ("fHadronInelastic" in Geant4 parlance) produce no PG, a bit less produce 1 PG,
and there is a tail of nuclear interactions producing more than one PG. PGs are produced with rela-
tively high energies, up to about 8 MeV, significantly more energetic than the photons produced by
most radionuclides used for PET and SPECT imaging. While recording high energy photons is a chal-
lenge, they provide one significant benefit: higher energies have lower probabilities to be absorbed
or scattered in the patient. A less noisy signal with respect to PET or SPECT images can therefore be
expected. Moteabbed et al. (2011) puts the transmission ratio between PET and PG at a factor 5 in fa-
vor of PG. Moreover, the production ratio is more favorable than PET, and with washout and delayed
acquisition a difference between a factor of 60-80 can be expected.

An important consideration is that we currently assume that PGs are spatially emitted isotropi-
cally. Geant4 also adheres to this assumption. However, there exists evidence to the contrary (Shel-
don and Van Patter, 1966; Verburg et al., 2012). Also, the target nucleus species has an influence on
the PG energy. Certain materials tend to produce certain PG energies. For instance, the 4.44 MeV
peak in the PG production energy spectrum shown in 3.5 is attributable to 12C. Hence, recording the
PG energy reveals something about the matter in which is was produced: 4.44 MeV PG would indicate
a carbon-rich tissue.
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Figure 3.1: A clinical proton therapy simulation in Gate/Geant4 where 106 protons are launched and
the resulting dose and PG distributions are plotted, rescaled to a maximum of 1.
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Figure 3.3: A schematic illustration of a nuclear interaction between an incident ion and an ion in
the target. Here a partial head-on collision is sketched, where a fireball is sheared off both incoming
and target ions. This fireball sometimes inherits a large fraction of the kinetic energy of the incident
ion, causing it to have a longer range than the BP of the primary ions, resulting in the dose-tail. Both
target, projectile and the fireball can relax through emissions of PGs.
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3.2 Gamma-ray detection principles

The second part of the term ’Prompt Gamma’ is derived from the typical energies the PG has, in the
1-10 MeV range. Although the energy limits are not sharply defined, high energy photons are referred
to as γ particles. In detection this distinction becomes important, because detecting higher energy
photons is more difficult than lower energy photons (eV or visible light range). Intermediate energy
photons (≈ 100keV ) can be referred to as X-rays. For low energy photons, a variety of commercially
available detectors exist. The two most common principles in these detectors are detection through
excitation of an electron to the conduction-band in a semiconductor or by liberating an electron by
way of the photoelectric effect. In the first category, the CCD (Charged Coupled Device) and CMOS
(Complementary Metal Oxide Semiconductor) are two of the most common photon detectors, found
in virtually every camera and phone today. The free electrons represent a charge which can be inter-
preted as a singal by a digitizing circuit. By binning the photosensitive area into pixels and reading
out every pixel individually, an image can be recorded. In the second category, a photomultiplier tube
(PMT) amplifies the initially liberated electron (from the cathode) by using electric fields and succes-
sive stages of dynodes to induce a cascade of electrons which ultimately are absorbed in an anode
where the charge can be measured. The PMT cannot measure the energy of the incoming photon
(because it usually releases only a single electron); the PMT only counts the number of photons.

Commercially available semiconductor-based imaging methods work best for photons with rel-
atively low energies of up to a few electronvolts (eV). For gammas, such detectors are too thin for
the photon to be fully absorbed and only their position might be measured. Since absorbing the en-
ergy is required in order to know the energy, semiconductor-based detectors would need to be very
thick and therefore very expensive to guarantee absorption. Photons produced by radionuclides are
typically in the 100 keV range, with the back-to-back photons produced after beta-decay at their sig-
nature 511 keV. PGs can go even higher as seen in fig. 3.5. For such high energy photons, a paired
scintillator and PMT is the usual choice because they provide larger sensitive volumes than semi-
conductors for a given cost. The scintillator is a material opaque to photons at higher energies and
transparent at lower energies. Scintillation means absorbing energy and re-emitting it as light. The
scintillating material thus acts as a photon energy converter, where the number of outgoing lower
energy photons is proportional to the energy deposited by the impinging high energy photon. This
gamma energy proportionality to a quantity of light is best measured with a PMT: they are very good
photon counters. Integrated the PMT output allows reconstruction of the gamma energy that im-
pinged the scintillator.

For impinging high energy photons, high-Z materials or inorganic crystals are most effective.
The photoelectric effect, Compton scattering, and pair production are the dominant interaction pro-
cesses of X-rays and gamma-rays. The photoelectric cross section is proportional to Z5, for pair pro-
duction to Z2, and Compton scattering goes approximately as Z, where Z is the atomic number. It
is evident why high-Z materials are a common choice for gamma detection. Three properties can
be measured about a photon: the incident direction, the energy and the time of arrival. In clinical
context, retrieving any information about the treatment delivery is the goal, so these properties can
be exploited in various ways to gain certain knowledge. From the direction we could build a picture
of the emission profiles along the beam direction. By observing the fall-off, the range of the pri-
mary can be inferred (fig. 3.1). By recording the time difference between launching the primary and
recording the PG, a range, similar to what is shown in fig. 3.1, can be inferred as well. By observing
the energy, the material in which the primary was stopped may be inferred. These quantities can be
used to measure similar or different quantities about the treatment, and therefore require different
interpretations and clinical thought. In the remaining part of this chapter, the devices currently in
prototyping phase measuring one of the three quantities will be discussed.
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Figure 3.6: By placing photon absorbing materials in the right way, the incident angle is constrained
to a (very) limited range. The fact that the angular acceptance is a finite range translates to a point
spread function (PSF) in the detector. In the figure, the photons come in from the left, and on the
right the PSF is sketched.

Figure 3.7: Parallel slits in an absorbing material provide multiple bins or pixels with the same con-
strained incident angle, allowing a 1D image of the source to be created. This type of collimeter is
called the Söller collimator or multi (parallel) slit collimator. Image CC-BY-SA licensed by Wikipedia
Authors.

3.3 Collimation

The incident direction of a PG can be established by limiting the field of view (FoV) of the photosen-
sitive area, see figure 3.6. This is possible with high-Z materials, like with scintillators. The difference
is that now a full absorption is needed, not a material that re-emits the energy as light. Metals such
as lead and tungsten are a common choice. Depending on the thickness of the collimator and the
width of the hole or slit, the incident angle is constrained to a limited range. The fact that the an-
gular acceptance is a finite range and not a single value translates to a point spread function in the
detector: particles emitted under an angle ’see’ a narrower slit and therefore the collimator transmits
fewer photons as the incident angle of the photon increases, the penumbra. The effect is described
by a point spread function (or PSF, see right hand side of 3.6). A narrower slit means a smaller angular
acceptance, which translates to a better precision on the incident path (smaller contribution by the
penumbra), but a higher number of rejected (absorbed) photons and therefore a lower signal. Since
sources of noise are usually constant, a lower signal means a worse signal-to-noise ratio. The number
of transmitted photons per emitted photon may be called the collimation efficiency.

A single slit or hole would only give information about the production of one point or line. In
PG verification, one of the things that is of clinical relevance is the proton range. In that case, as per
figure 3.1, an image of the dimension along the beam must be recorded. That goal can be attained
by either placing multiple slits along the beam, each collecting into a bin, or by using a relatively thin
collimator with a single slit and project the angular dispersion onto a segmented detection surface.
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Figure 3.8: The MPS camera design validated by experiment at the IBA C230 synchrotron at National
Cancer Center (NCC) in Korea, where the SW = 2 mm, ST = 2 mm, t = 3mm and SL = 150 mm.

3.3.1 Multislit Collimation

The most straightforward collimator geometry is the multislit collimator. Each slit is collected in a
single bin, and by having these slits and bins along the beamline, a 1D PG emission profile is ob-
tained. The perpendicular dimensions (the length of the slits) can be used to increase the collected
signal, at the cost of losing the angular information in that direction.

Korea

A multi parallel slit (MPS) design (3.8) was presented in Min et al. (2012), were the setup was tested in
silico using MCNPX. A parametrized PG source was created based on 2 ·108 primary protons, which
facilitated obtaining four camera parameters: scintillator thickness (t), slit width (SW), collimator
thickness (ST), and slit length (or depth, SL). Other parameters such as the scintillator length (50
mm) and the height of the scintillator (30 mm) were chosen based on ’intuition’. Surprisingly, the
material of the collimator is not provided. AAn equation was derived for the optimal thickness of
the scintillator based on the ratio between PG and background counts. The background was found
by averaging the gamma counts within the 2–4 cm range distal to the PG peak. The source for the
optimization stage was a 80, 150, and 220 MeV proton beam, while the target was a waterbox sized
20x20x40 cm. For one configuration, where the collimator has a 4 mm pitch, 2 mm slits (SW) and 2
mm collimator thickness (ST), scintillator thickness t = 3 mm (t) and slit length SL = 150 mm, an ex-
perimental validation was performed at the IBA C230 synchrotron at National Cancer Center (NCC)
in Korea. Here, the CsI(Tl) scintillator (Institute of Scintillating Material, Ukraine) was coupled di-
rectly to a photodiode (S3588-08, Hamamatsu Photonics K.K., Japan).

The optimal dimensions of the scintillators and the collimation system were finally determined
to be 3, 2, 2, and 150 mm for the t, SW, ST, and SL, respectively. A PG to background ratio of approx-
imately 0.20 is obtained with the optimized parameters. Finally, fall-off estimation was performed
with a sigmoid-fit. Unfortunately, no results for the fall-off precision are presented.

A patent filed later by competitors (Freud et al., 2015) describes an optimization of a MPS colli-
mator based on the collimator presented here, resulting in different values for the parameters, which
in turn resulted in a different signal to background ratio. In Min et al. (2012), parameters were op-
timized individually, while in Freud et al. (2015) it was attempted to take into account the interplay
of parameter choice as well. This indicates a significant complexity when it comes to detection opti-
mization, where parameters should not be chosen independently.
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Case
Precision
fall-off

Precision
entrance

Precision
profile
length

FOV Slit Slab Thickness
Distance
axis-
collimator

Distance
axis-
detector

1 0.59(0.06) 0.66(0.09) 0.88(0.11) 23.6 5.4 2.6 180.2 303.7 485.3

2 Same as Case 1

3 0.70(0.08) 0.87(0.12) 1.12(0.14) 13.1 3.0 2.1 190.9 322.3 516.5

Table 3.1: Table 6 taken from Pinto et al. (2014), containing the collimator geometry and performance
of the optimization carried out with 5 ·108 protons. Units are in mm unless specified otherwise.

CLaRyS

A MPS collimated design is currently under construction at the Institute of Nuclear Physics of Lyon, as
part of the CLaRyS project (Contrôle en Ligne de l’hAdronthérapie par RaYonnements Secondaires),
a cooperation between various French laboratories: IPNL in Lyon, LPC in Clermont-Ferrand, LPSC
in Grenoble, CREATIS in Lyon, LIRIS in Lyon, CPPM in Marseille and the Centre Antoine Lacassagne
in Nice, which hosts a medical proton beam. The detector consists of repurposed and refurbished
scintillator-PMT units originating from a Phillips PET scanner. The scintillator is a streaked block of
bismuth germanate oxide (BGO) providing 8 by 8 pseudo pixels. There are a few preferred choices
for scintillation materials (most notably Cesium-doped materials such as LaBr3:Ce and LYSO:Ce),
but BGO was determined to be comparable to both, and better on account of it having no intrinsic
radioactivity Richard et al. (2012). Each scintillator block is read out by four PMTs which allows a re-
construction of the impact position via centroid calculation. Although not done at this time, sub-slit
position measurements may improve the results at a later time. Although (Krimmer, 2015, Section
2.2) describes the BGO blocks in the context of a Compton camera, the blocks are in fact the same
ones as will be used for the MPS camera. Read-out electronics for the blocks will also be the same. In
addition, time of flight (ToF) measurement is enabled by the inclusion of a hodoscope, which times-
tamps incident protons. Based on the observation that the background is largely a constant noise,
while the PG signal arrives within nanoseconds after a proton pulse, about a 60% of the background
is removed by setting a ToF acceptance window on the detector output. The PG energy window is set
at 1 - 8 MeV.

The design of the Tungsten collimator was largely determined by the study laid out in Pinto et al.
(2014). Here, for the first time, an in silico (Geant4) optimization study was carried out by randomly
varying the collimator parameters (slit width, slab width, slab thickness, distance to source) and test-
ing its performance on a few key indicators. This resulted in three configurations performing best for
three indicators: best precision on the fall-off position (Case 1), best precision on the profile length
(distance to FoP, Case 2), and best precision on the fall-off position with a FoV lower than 15 mm (FoV
here refers to the sum of the slit width + twice the penumbra, Case 3). The results of the optimization
are presented in table 3.1. These results were obtained with a homogeneous target and a pencil beam
counting 5 ·108 protons. The fall-off is retrieved by taking a high statistics profile as reference, and fit
spot profiles by a non-uniform rational B-spline (NURBS) function in the region of the profile fall-off.

In summary, the collimator geometry optimized for best fall-off precision attains a precision of
0.59±0.06 mm in a homogeneous target, using 5·108 protons with the aforementioned ToF selection.
The mono-energetic 160MeV pencil beam was centered in a cylindrical PMMA phantom with a 75
mm radius and 200 mm in length.
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Figure 3.9: The IBA knife-edge camera as shown in Priegnitz et al. (2015). The collimator material is
Tungsten. The phantom is an outer PMMA shell in which various inserts (’mask’, air, lung, adipose,
muscle, brain and bone) can be placed in various order, to study their effect on the range and the PG
profile.

3.3.2 Knife-Edge

In the parallel slit configuration, each slit is supposed to provide a projection of the line-segment
directly in front. Each slits line segment is placed sequentially to obtain a full profile. The penumbra
of each slit is minimized by the relatively deep slits, although increasing the size and weight of such
designs. The advantage is that the detection response is constant over the range of the profile, and
the camera field of view is determined by the number of slits. Another approach is to take a single slit
collimator and shape the slits edges. The effective slit width as function of the incident angle is kept
constant, up to the angles of the slits edges. An image of a much larger line segment than a single slit
in a MPS design can then be seen. This enables a thinner collimator, at the cost of a position depen-
dent detection response: the line segments further away from the slit (in the transverse direction) are
further away from the collimator and target. Because the resulting slit resembles a knifes edge, the
collimator design is called the Knife-Edge Slit (KES).

IBA

Fully characterized in Perali et al. (2014), and the performance studied in detail by Priegnitz et al.
(2015), the IBA prototype is a KES design and the first and only camera at the time of writing with
published clinical results (Richter et al., 2016). The collimator is a 4 cm thick Tungsten block, with
a 6 mm slit with 63 degree knife edges (fig. 3.9). The scintillator is LYSO (provided by Saint Gobain)
and was selected for its density, its light yield and for its short decay time of 41 ns. LYSO suffers
from the presence of the beta decaying isotope 176Lu, which has an upper limit on the decay energy
of 1.193 MeV. By setting an energy acceptance window on the detector output of 3 - 6 MeV, these
events should be eliminated. The height was chosen to be 30mm, which facilitates a 1:1 coupling
to the readout which is a SiPM array size of 31.5 mm. The LYSO and readout are segmented every 4
mm along the beam profile direction. The ratio between the source to collimator and collimator to
detector distances implies a scaling factor of 0.8, which means that the total length of the detector,
8 cm, corresponds to an ability to measure 10 cm of the PG emissions at the source. It should be
noted that if the camera is not moved during a clinical treatment, each spot would have a slightly
different magnification factor, due to the different transverse spot positions and the different source
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to collimator position that implies. No solution for this implication is provided. Since moving the
camera towards or away from the patient synchronous to each spot is an impracticable solution,
translating the transverse distance to the camera to the correct magnification factor is a solution that
may be considered.

To retrieve the fall-off, Priegnitz et al. (2015) describes a procedure that entails taking the first and
second order derivatives of the obtained profile:

1. Normalization and background subtraction: all profiles are scaled so that the mean of the three
most proximal data points is one and the mean of the three most distal points is zero.

2. Distal edge definition: it is defined as the most distal part of the profile, where data points
are larger than a certain threshold (here, we chose 0.1 to suppress statistical background fluc-
tuations), the profile is decreasing (first derivative < 0), and only one inflection point occurs
(second derivative is zero only once). What is not described, is what happens with data that
does not pass this criterion.

3. Normalization for range estimation: defined distal edges are normalized to 1 and 0.
4. Range deviation estimation with distal slope matching algorithm, where the match is per-

formed by profiles obtained with a high statistics measurement of simulation.

Next, the effects on the range and PG profile of replacing various inserts in the phantom and in-
troducing shift due to a change in beam energy are studied. For each ’shift configuration’ (be it a
replaced material or a changed beam energy) a physical measurement with 2.6 ·1011 protons is per-
formed at the Proton Therapy Center Czech in Prague, Czech Republic, and in silico estimations at
107, 108 and 109 are performed. The in silico estimations are provided by the analytic variance re-
duction method for PG estimation laid out in Sterpin et al. (2015). As described there, at the time
the algorithm did not deal with lateral inhomogeneities, which is the likely reason for the study to
include a 1D phantom. Each in silico PG estimation is executed a thousands times and the fall-off
obtained with the procedure described above histogrammed. The mean and standard deviations of
these histograms provide the fall-off estimation precision. Then, based on the ground truth mea-
sured in the physical experiment, receiver-operating characteristic (ROC) curves are created and
provide an estimate of whether or not the shift is correctly obtained as function of the number of
primaries launched, and for each change in material or energy shift.

The best fall-off precision (standard deviation on the FOP measurements) reached is about 2 mm
for targets that are homogeneous in the field of view of the camera, with 109 primaries. Both condi-
tions may be expected to be rare in clinical conditions. Perhaps more interesting is the implication
of (Priegnitz et al., 2015, fig 8): the shifts, beam energies and inhomogeneities interplay in interesting
ways, which might be exploited to learn more than only about fall-off positions.

Some observations by the same group published in Smeets et al. (2012) are of interest:

• PG profiles after 4 - 5 MeV energy selection have the best signal to background ratio,
• PG profiles don’t correlate with deposited dose with an upper energy threshold of 1 MeV, which

complements the observations regarding the intrinsic activity of LYSO,
• Lower detection energies show less sharp Bragg Peak, complementing statements regarding

scattered PGs in Min et al. (2012).

Delft

A KES design was combined with ToF in Lopes et al. (2015), which features a very similar collimator as
the IBA prototype, where the collimation slab is Tungsten and 4 cm thick with a 6 mm slit (3.10). The
angle of the knife edge is not given. The source to collimator and collimator to detector distances
are identical: 15 cm. The work builds on the results the group published in Biegun et al. (2012)
by demonstrating measurements with the fully realized prototype obtained in the German Proton
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Figure 3.10: The Delft knife-edge plus time of flight selection design. Source: Lopes et al. (2015).

Therapy Centre Essen (WPE), with a 160 MeV proton beam and the camera aligned with the expected
fall-off position. Two scintillator materials are compared (LYSO:Ce and BGO), and a detailed analysis
of the data acquisition electronics is provided, in particular how the ToF and PG energy measurement
is optimized. It is stated that the BGO scintillator shows better sensitivity for high (>6 MeV) PGs. The
effectiveness of ToF at removing noise is underlined. The ToF-energy matrices prove to be a good way
to visualize which part of the distribution correlates to PG events and which not, and these results as
well as the signal to noise ratios per energy bin are provided for each scintillator material. The results
are a bit different, so optimal choices for ToF and energy spectrum threshold appear to be a function
of the scintillator material.

Sigmoid curve fitting was used to obtain a fall-off position from profiles measured with 6.5 ·109

protons shot into a PMMA cylindric phantom with a 15 cm diameter and a 20 cm length. A reduced
statistics measurement was obtained by random sampling of the 6.5 ·109 measurement, resulting in
an estimated 6.5 ·108 acquisition. Via bootstrapping, a 100 measurements per setting are simulated,
making the estimation of the standard deviation possible. The inflection point of the distal slope was
chosen to be the fall-off position, similar to what was seen earlier. The phantom was shifted in its
entirety over 1, 2, 3 and 4 mm and the inflection points plotted. A standard deviation was obtained
Results are given for BGO, LYSO:Ce and LYSO:Ce + ToF, and per number of primaries. In some cases,
with 6.5 ·109 primaries, a precision on the FOP of better than 1 mm is reached, however, especially
with BGO, small shifts are not seen. With LYSO:Ce, small shifts are systematically underestimated.

3.3.3 Pillar Grid Collimator

The Pillar Grid collimator described in Kim et al. (2016) is probably the most ambitious design to date.
The goal is nothing less than 3D dose reconstruction by way of PG computed tomography. The study
was carried out in silico (MCNPX for the proton propagation, Gate for the PG propagation). The op-
timal parameters (figure 3.11) were found, where a trade-off was found for maximal measures for the
half-maximum (FWHMs) and best signal-to-noise ratios (SNRs). Also the effect on the FWHM and
SNR of various cuts on the PG energy was studied. Finally, reconstruction was carried out with three
methods: back projection (BP), filtered back projection (FBP) and maximum likelihood expectation
maximization (MLEM). Fall-off positions are obtained with a sinusoidal fit, and compared between
the three reconstruction methods, resulting in values within 2.5 mm of each other. The setup was
an 80 MeV proton beam shot into a waterbox. The authors admit that to save on simulation time, a
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Figure 3.11: An ambitious design proposal: pillar grid collimation with the aim of enabling 3D dose
reconstruction through PG imaging. Optimal parameters were found at l = 7 cm, t = 5.5 mm and d =
3 mm. Source: Kim et al. (2016).

limited number of primaries had to be used and the results should be evaluated in ’a relative manner’
and the quality of the reconstructed images would be improved by increasing the simulation time,
although they do not expect a change in precision on the BP. An efficiency of 0.93% is given, where
efficiency is defined as the number of valid interactions used for the image reconstruction divided
by the number of incident protons. A correlation between dose and PG fall-off is found, but not
subjected to a statistical analysis.

3.3.4 Comparison study

Of course, understanding the differences between different designs such as MPS and KES is easiest
in a direct comparison. In Lin et al. (2016) an in silico comparison (using a relatively old version of
Geant4/Gate) is performed where a 160 MeV pencil beam of 108 protons was centered in a cylindri-
cal PMMA phantom with a 75 mm radius and 200 mm in length; the exact same target as in Pinto
et al. (2014). Each simulation was run 5 times to obtain a standard deviation. Apart from the type of
collimator, all parameters were kept equal so that any difference in results may be linked to nothing
else except the collimator design. A LYSO scintillator was used, a KES design similar to what was de-
scribed in the IBA section and a MPS design similar to the Korean design, see figure 3.12. Fall-off posi-
tions were retrieved with the method presented in Smeets et al. (2012), and PG detection was binned
in 1 mm bins. It should be noted that the detectors were optimized with different procedures and
then modified to have the same detector-to-collimator and collimator-to-source distances. From
Roehlinghoff (2014) we know that the two types have similar performance with similar parameters.

The authors note that the neutron-to-photon ratio is higher in the MPS design, causing a degra-
dation in signal and in the conclusions the authors note that ToF selection would have helped. The
fall-off width (or fall-off region) is wider for the KES design, but according to the authors the fall-off
slope may lead to less accurate range detection, which is contradicting a finding in Roellinghoff et al.
(2014). However, a better precision of the fall-off position (FOP) is found with KES design nonethe-
less: KES σFOP = 0.49mm and MPS σFOP = 0.85mm. This is attributed to the better peak to back-
ground contrast in the KES profiles. Then, an energy window giving the best BP correlation is found
at 2-7 MeV for the MPS collimator 3-7 MeV for the KES. With these cuts, the accuracy improves, and
the precision is better, and now in favor of the MPS, perhaps on account of the wider energy cut and
the correspondingly higher count rate. What is interesting is Table 2, where the various parameters of
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Figure 3.12: The two collimated detector designs compared in Lin et al. (2016). Detector a is the MPS
model; detector b the KES. The dimensions of the KES collimator were based on the IBA KES pro-
totype, while the MPS dimensions reflect the Korean MPS. Beam-collimator and collimator-detector
distances were equalized.

the fit procedure are given in terms of a mean and standard deviation, for three primary energies (50,
100 and 160 MeV). Precision is generally in favor of the KES, while at 50 MeV the accuracy of the MPS
is best. The effect of the location-dependent solid angle in the KES design is noted. In table 3, the
effect of a larger phantom is studied, and the attenuation affects the baseline and peak magnitudes.
An effective 10 cm extra path through the PMMA phantom translates to a reduction in peak contrast
of 30% with the MPS collimator and 40% with the KES collimator. The last analysis concerned shift-
ing the phantom between 1 and 20 mm, which resulted in standard deviations on the shift estimates
of 3.82 and 2.46 mm for MPS and KES collimators respectively. When the authors remove the back-
ground signal, to simulate a perfect ToF selection, standard deviation of 1.87 mm and 1.76 mm are
obtained. All precisions are based on simulations with 108 protons and 5 realizations for statistics,
the latter of which is reason for caution with respect to the standard deviations. Also, the collima-
tors were optimized independently by different authors, so general conclusions with respect to MPS
versus KES designs are difficult to draw.

3.4 Compton Camera

Compton cameras feature scatter planes as a method of focus. One or more planes of a certain ma-
terial will scatter the incoming photon, through Compton interactions where part of the energy is
transferred to an electron in the plane. What makes this physical effect useful in a camera is that the
photon scatter angle and photon energy loss are related, according to the following equation:

cosθ= 1+me c2
( 1

E
− 1

E ′
)

(3.1)

where E is the incident photon energy, E’ the photon energy after scatter, θ the angle of scatter,
and me c2 the energy at rest of an electron (511 keV). If the scattered photon is then (fully) absorbed
in the scintillator, similar to those in collimated designs, the full remaining energy is equal to the en-
ergy after scatter, E’. The energy released in the scatter plane can be measured, and the initial photon
energy E is then equal to the sum of the energies measured in the scatter plane and absorber. In both
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Figure 3.13: A scatter plane and an absorber allow (the cosine of) the incident angle to be recon-
structed. Various measurements results in various cones, which intersect at the position of the
source. Image courtesy of Kim et al. (2013).

scatter plane and absorber the position is measured, after which the angle of the incoming photon
can be reconstructed. A few measurements would results in a few so-called Compton cones, after
which the point(s) where the cones overlap is where the source was (fig. 3.13). Dedicated reconstruc-
tion algorithms, most based on iterative methods, infer the mean ion track of the treatment portion
that is considered (a spot or an energy layer for instance). In the context of particle therapy, having a
hodoscope track the ions direction could provide a constraint for a cone-by-cone reconstruction.

The main challenge is filtering out noise due to random coincidences. Like in PET, Compton
cameras detect coincidences in different detectors due to unrelated events as well, which cannot be
distinguished from true coincidences. That means there is a saturation effect at high rates. PGs are
produced by the primary particle, and they are part of bunches in the accelerator. So depending on
the accelerator, and specifically its micro time structure, we can have the expected PG rate at the
Compton camera. At clinical beam intensities, Ortega et al. (2015) states 12.5 protons impact the
patient per nanosecond, which is well under their timing resolution. New accelerator designs such
as the IBA S2C2 will have even denser micro time structures, leading to higher expected PG rates and
higher numbers of false coincidences. One possible solution is to start the treatment with a reduced
rate, and after sufficient signal is recorded and no significant difference is measured, the treatment
could continue.

Since the incident photon energy is not known, perfect absorption is a requirement for the com-
putation of the correct angle of the Compton cone. A way to obtain the correct incoming angle with-
out perfect absorption is by having multiple scatter planes, as was shown in Richard et al. (2011).
A simulated double scattering Compton camera was demonstrated to have a "true efficiency", the
number of true reconstructed events over the number of (isotropically) emitted PGs, of 0.7 · 10−5.
Increasing the number of scatter layers means increasing the detection efficiency.

MACACO (Valencia)

One of the two complete prototypes is MACACO from Valencia. The prototype has three layers, each
a mix of an absorber and scatterer. Each layer is composed of a slice of LaBr3 attached to a SiPM
(silicon photomultiplier) readout. The absorber thickness is 5 mm for the first two layers, and 10
mm for the layer furthest from the target. The transverse size of each layer is 27.2 by 26.8 mm for
the first layer and 32 by 36 mm for the other two. The first images of a radioactive source acquired
with the fully realized prototype were presented last year (Llosá et al., 2016), and the first tests with
a 150 MeV proton beam in a PMMA target in Solevi et al. (2016). In in silico experiments (using
Gate), the efficiency of an PG undergoing a double interaction in the first and second detector layers
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ranges from 6.9 ·10−6 for lower PG energies and 2.5 ·10−5 for higher PG energies. With energy cuts
these number drop, but the spatial resolution improves. In the acquisition with a proton beam, cuts
around the 4.44 MeV PG energy spectrum spike were used to study a ±5 mm shift; a 7 mm shift was
measured based on 18000 coincidences for the -5 mm shift and 28000 for the +5 mm shift. Only the
incident protons rate is given: 9 ·107 protons s−1.

Polaris-J (United States)

The second complete prototype is the Polaris-J Compton camera, which was subjected to proton
beam tests in Polf et al. (2015). The camera has four detection planes, each identical, made up of a
Cadmium Zinc Telluride scintillator of 1.5 cm thick an a total transverse cross section of 4 by 4 cm.
The detector configured in double coincidence mode, so between two and four layers must have
a simultaneous hit to be recorded as an event. The main aim was to establish whether or not the
camera could deal with clinical beam intensities, so this was tested with a single pencil beam of 150
MeV (8.2 ·106 protons/second) and a layer of 5×5 114 MeV pencil beams (6.4 ·107 protons/sec), both
shot into a 20×20×32 cm waterbox. A "stochastic origin ensemble" PG image reconstruction code
is used, published earlier and tested on Monte Carlo generated data.

The 150 MeV beam PG yield was acquired after reducing the beam current to a coincidence rate
of about 4 kHz in the detector (which explains the sub-clinical rate of 8.2 ·106 particles per second
mentioned above), while for 114 MeV 4.5kHz was determined to be optimal. The authors note this
agrees with the efficiency of ≈ 5 · 10−4 reported by the previous group in Ortega et al. (2015). With
each beam, the waterbox was shifted 0, 3, and 5 mm, and between 3.85 · 105 and 1.24 · 106 coinci-
dences obtained per acquisition. The 2D and 1D PG images are analyzed shown, but no quantitative
statements with respect to the shifts are given. An estimated minimum number of protons required
to compute an image with a sufficiently acceptable SNR ratio is computed to be 7.2 · 108, which is
later presented as a required factor of 25 improvement in PG detection rate.

Another interesting finding is that the 60% level of the distal PG falloff peak corresponds well with
the depth of the 90% level of the Bragg Peak, supporting other observations that in the final millime-
ters of the primary next to no PGs are produced. Further investigation into the exact relationship is
suggested.

CLaRyS

The absorbed layer being built for the CLaRyS MPS camera is also being built to be the (distal) ab-
sorber layer for a Compton camera designed simultaneously alongside the MPS camera. By sharing
the BGO absorber, associated readout, and hodoscope, comparison between Compton and MPS de-
signs will be interesting to observe.

In the design stage of the camera, an in silico (Geant4) study of the optimal geometry is per-
formed (Roellinghoff et al., 2011). The scatter planes consist of 2 mm thick silicon strip detectors and
a LYSO absorber. The number of scatter planes was varied between 2-34, with them equally spaced
and 9 cm between first and last plane, and the first plane 10 cm from the source. 10 scatter layers
was chosen to be the optimum between cost and efficiency. The distance between the last scatter-
plane and the absorber was varied between 5-50 cm. 40 cm was chosen as the distance between
first and last layers, which seemed a good trade-off. A good spatial resolution and ToF favors greater
camera length (great distance between photon interactions), while detection efficiency favors a wide
FoV, which is reached by placing the detection planes closer together. A different absorber material
(LaBr3:Ce) is thought to provide increased spatial resolution. An interesting calculation follows in
the conclusion: a carbon TP is considered that delivers 1 Gy to a 120 cm3 tumor, in 39 slices. That
takes about 7 ·108 incident carbon ions. The Bragg peaks of consecutive slices are in this plan sepa-
rated by 3 mm. A PG emission rate of 10−3 photons per mm and per incident ion (carbon, between
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95 and 300 MeV/u) is expected before the Bragg Peak. Due to peak summing, the most distal en-
ergy slice will be delivered with about 10% of all incident ions, so about 7 ·104 gammas per mm are
expected for the distal layer. With the setup under consideration, reaching a detection efficiency of
about 2.5 ·10−4, this means about 2 gammas per mm for the distal energy slice of this 1 Gy fraction. A
spatial resolution of 8.3 mm FWHM is reached, falling short of the 3 mm difference between energy
layers.

The current design involves double sided silicon strip detectors (90×90×2 mm3, 2×64 strips)
as scatter layers and the readout electronics for both scatter and absorber layers are currently being
produced.

3.5 Prompt Gamma Timing Camera

Figure 3.14: The Prompt Gamma timing camera schematic design as proposed in Golnik et al. (2014).

Apart from position, time of arrival (or time of flight ToF) provides information about the beam-
patient interaction. PG timing (Golnik et al., 2014) cameras measure ion range by converting the
ToF to a distance (fig. 3.14). The primary crossing 5-20 cm of tissue translates to a transit time of
1-2 ns. By positioning the camera under a small angle with the beam line, the ToF is almost doubled,
which for a given camera timing resolution improves the ToF estimate. The paper explores the details
of ToF cameras by analyzing, among others, the impact of timing resolution uncertainty, clinical
beam currents and effective counting rates, energy cuts and absolute count rates based on the target
material. Correlation between range and ToF spectra are found, but further study is required.

A later paper from the same group provides the first measurements, with a clinical proton beam
and an analytic target: a cylindric tube of PMMA in which cylindric inserts can be placed (Hueso-
González et al., 2016). It is confirmed that different materials have a different ToF-spectrum. The
bunch time spread is a limiting factor: depending on proton energy it is found to be between 350
ps (230 MeV primary protons) and 2 ns (100 MeV), whereas transit time of the primary through the
target, and consequently the width of the ToF spectra is between 3 and 4 ns. Based on replacing a
PMMA insert with air or bone inserts, it is hinted that a single detector is able to recover 5 mm range
errors with 108 protons.

3.6 Spectral PG Camera

PG spectroscopy is being developed at Massachusetts General Hospital (Verburg and Seco, 2014)
(fig. 3.15), where the target tissue and proton energy is deduced from the PG energy spectrum. Cer-
tain peaks in the PG spectrum correlate strongly to excited states of target nuclei, and their intensity
depends also on the energy of the primary. By measuring a few spectral lines in the spectrum, and
computing their ratios, a sort of fingerprint is obtained. By tabulating this data based on the beam
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Figure 3.15: The schematic design for the spectral PG camera as proposed in Verburg and Seco (2014).

and CT data beforehand, the fingerprint can be looked up in the tabulated data and so the material
and residual primary energy is known. From this, the position along the beam axis in the patient
can be inferred, and with the residual primary energy the fall-off position can be estimated. Detailed
knowledge of PG production cross-sections is required and much effort is dedicated to measuring
and modeling them. After millimetric precision was presented, the authors expect clinical testing to
begin soon (Verburg and Bortfeld, 2016).

An interesting detail is that these authors do not assume PG emission isotropy. The PG produc-
tion cross-sections are computed for specifically a 90 degree angle with the proton beam.

3.7 Monte Carlo

Particle therapy is a much more complex than X-ray therapy, and adding detectors on top of that
results in a large system with many components that interplay in even more ways. It is then not a
surprise that so much work is still in the planning or prototyping phase. Fortunately, the quality of
physics simulation (MC) tools such as Geant4, EGSnrc, PENELOPE, MCNPX and Fluka is improving
so that they can be used in medical studies. This includes MC-aided detector design. For instance,
when designing a collimated PG camera, design choices must be made and motivated. To name a
few: collimator size, thickness, number of slits, slit width, knife edge angle, scintillator size and mate-
rial, collimator to source distance, collimator to detector distance. For each of these, we know there is
an influence on the expected signal, in terms of yield, precision and so on. What is usually not known
is the precise influence, or the interplay between various parameters. Testing for these effects in ac-
tual setups is laborious and time-consuming. Beam time is expensive and in limited supply, while
computing time is a fraction of the cost and increasingly ubiquitous. In silico optimization studies
such as Lin et al. (2016) are therefore a huge time-saver and enable the investigation of parameters
and their interplay which would not be possible in real experiments because there is no time for it.
It should be noted that as far as I have seen, Pinto et al. (2014) is the only optimization study where
the parameters were not studied independently, but in a multitude of combinations by employing
a brute force approach: randomize all parameters and test all combinations. I think such studies
will be increasingly a common part of any design study where physical parameters are expected or
have a known effect on the signal. Moreover, for medical research such as described here the end
goal is a proof that in clinical conditions the detector improves treatment or provides new pertinent
information to the clinicians. That must eventually be shown on real patient irradiations, another
experimental condition that is in short supply and constrained by safety and health factors.
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Being able to read patient data, use treatment plans, irradiate the plan and observe the effect
for the thousands of combinations of possible parameter choices is an attractive thought. Of course,
this requires not only that MC tools interoperate with clinical data, but also that their physics is tuned
and validated for medical purposes. Historically, many physics MC tools were built for high energy
physics (HEP) experiments, so that detection can be compared to the effect of physics as we think
it is. The MC tool used in the original work in the following chapters of this thesis is Gate, which
wraps Geant4, a product of the CERN collaboration. Gate provides an extended macro-interface and
various components relevant to medical research, as opposed to the HEP-experiments focused com-
ponents present in Geant4. Gate adds no physics itself, it relies completely on the Geant4 and its
physics–lists for the physics. It does add variance reduction techniques, speeding up the conver-
gence towards certain outputs. A physicslist in Geant4 is a collection of particular implementations
of physics models. The same physics may be described various models, each optimized for different
targets. For instance, a model can be optimized for precision or speed, or a particular energy range.
For charged particles, the main options are Bertini, Binary Cascade, and QMD. For electromagnetic
particles (electrons, photons) there is Standard, Livermore and Penelope. Other models are geared
towards a particular subject, such as DNA, where (from the perspective of HEP) very low energies
are involved, and we see the start of modelling chemical interactions. Quite recently, the Geant4 col-
laboration made a physicslist specific for hadron therapy available. Most physicslists do not include
modelling for the magnetic field, so some lists provide variants that do include it. The details of these
lists are outside the scope of this thesis, but one thing is not: to be aware that it is a choice that must
be made and that the user must be aware of the level of validation the physicslist has received for
his particular quantity of interest. For instance, the Hadrontherapy physicslist may be optimized for
dose precision, but that does not mean it provides accurate PG estimates. Each purpose must be vali-
dated by experiment, and for PG we know Geant4 physicslists overestimate the yield. In recent years,
the overestimate has grown less, but work is ongoing (Dedes et al., 2014; Pinto et al., 2016; Robert
et al., 2013). PG background estimation – that is, all the signal a detector may pickup that is not a PG
– has not seen any validation, which is at this time a major missing component when using the tool
for PG detector validation.

3.8 Summary and outlook

We have seen the state of the art of most PG verification methods, collimated designs in particular.
The first clinically used PG detector was a KES design and collimated designs certainly seems to be
leading the field, probably because of its conceptual simplicity. Compton cameras are seeing a lot
of interest too, although the only other design reportedly close to clinical testing is the spectral PG
camera.

The field is focused on range verification; that is to say to exploit the correlation between range of
the primary in the patient, the consequent distal dose fall-off (with protons no dose past the BP) and
the PG profile fall-off. Optimal use of particle therapy implies optimal use of this sharp dose gradient,
which is most interesting at the outer edges of a tumor, and even moreso on a tumor-AOR interface.
Because of range uncertainties, such planning is currently avoided, forfeiting the advantage particle
therapy could have. Observing the range, or in fact the fall-off position, might help reduce the range
uncertainties and at the very least provides feedback on the dose of the day.

The precise correlation between primary range and PG fall-off is still a topic of research (Mote-
abbed et al., 2011). In addition, España and Paganetti (2010) state that duo to the stoichiometric HU
to RSP calibrations, a sub 0.5 mm proton range variation is expected. They also say material calibra-
tion leads to much larger variation in PET computation, presumably because the material compo-
sition has a larger effect on positron production that on proton stopping power. It stands to reason
that the effect for PG might be similarly larger than 0.5 mm. Clarification is needed.
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Moreover, uncertainties in RBE may complicate the precise relationship. As alluded to in the
introduction, the RBE may be a function of the energy of the primary. There is reason to believe
that the RBE is higher in particular around the BP. If correct and sufficiently proven, this leads to an
effective biological range extension (fig. 3.16).

Imaging the PGs and in particular their range seems a sensible approach for particle treatment
verification. However, the precise correlation between deposited dose and PG fall-off requires careful
measurement of PG production cross-sections for various materials, which is a tedious, long and
complex affair. Fortunately, even without dose-PG correlation, the difference between measured
and expected PG signals can be used to provide clinical feedback. Moreover, as will be explored later,
other features than the PG fall-off position may be useful for clinical feedback.
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Figure 3.16: Variable RBE values produce a increase of the local RBE value towards the distal range
(top). If such a model is assumed for the dose computation, we see that there is an effective range
extension (bottom). Obviously this has serious clinical repercussions. In addition, many PG cam-
eras study the range with similar precision as the shift due to the choice of RBE models, so it seems
important to know well which predicts the biological dose best. Source: Tommasino and Durante
(2015).
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Chapter 4

Accelerated Prompt Gamma estimation
for clinical Proton Therapy simulations

In this chapter the effort on the accelerated simulation of PG estimates is presented. The experimen-
tal difficulties with low yields discussed in the previous chapter pose a problem for simulations as
well: converging on an acceptable estimate of a rare process requires much computation and there-
fore long wall-times, even with the aid of cluster computing. Details on these difficulties are also
discussed in the paper, which was published in 2016 in Physics in Medicine and Biology (Huisman
et al., 2016). After the paper, some notes will be discussed, adding some detail and implications
about the implementation. In addition, an alternative recently published PG estimation method will
be briefly discussed.
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Abstract

Purpose: There is interest in the particle therapy community to use prompt gammas (PG), a natural byprod-
uct of particle treatment, for range verification and eventually dose control. However, PG production is a rare
process and therefore estimating PGs exiting a patient during a proton treatment plan executed by a Monte
Carlo (MC) simulation converges slowly. Recently, different approaches to accelerating the estimation of PG
yield have been presented. Sterpin et al. (2015) described a fast analytic method which is still sensitive to
heterogeneities. El Kanawati et al. (2015) described a variance reduction method (pgTLE) that accelerates the
PG estimation by precomputing PG production probabilities as a function of energy and target materials, but
has as drawback that the proposed method is limited to analytical phantoms.

Materials and Methods: We present a two-stage variance reduction method, named voxelized pgTLE (vpg-
TLE) that extends pgTLE to voxelized volumes. As a preliminary step, PG production probabilities are pre-
computed once and stored in a database. In stage one, we simulate the interactions between the treatment
plan and the patient CT with low statistic MC to obtain the spatial and spectral distribution of the PGs. As
primary particles are propagated throughout the patient CT, the PG yields are computed in each voxel from
the initial database, as function of the current energy of the primary, the material in the voxel and the step
length. The result is a voxelized image of PG yield, normalized to a single primary. The second stage uses this
intermediate PG image as a source to generate and propagate the number of PGs throughout the rest of the
scene geometry, e.g. into a detection device, corresponding to the number of primaries desired.

Results: We achieved a gain of around 103 for both a geometrical heterogeneous phantom and a complete
patient CT treatment plan with respect to analog MC, at a convergence level of 2% relative uncertainty in the
90% yield region. The method agrees with reference analog MC simulations to within 10−4, with negligible
bias. Gains per voxel range from 102 to 104.

Conclusion: The presented generic PG yield estimator is drop-in usable with any geometry and beam con-
figuration. We showed a gain of three orders of magnitude compared to analog MC. With a large number of
voxels and materials, memory consumption may be a concern and we discuss the consequences and possible
trade-offs. The method is available as part of Gate 7.2.

1 Introduction

The well-defined range of particles in matter is the main reason they are used in cancer treatment today. Unfor-
tunately we are not able to take full advantage of this property, because of uncertainties in patient positioning,
uncertainties on the proton range due to unknown displacements or deformations of organs, ill-defined lung,
bowel or bladder filling, and the inherent uncertainty in the Houndsfield unit to particle stopping power con-
version. Often, medical practice is to plan conservatively, namely adding margins around the tumor, greatly
reducing the potential benefits of particle treatment (Knopf and Lomax, 2013). Some form of in-vivo, on-
line monitoring is generally considered to be a way out of this predicament. Online monitoring would make
measurements of uncertainties such as mentioned above possible, and thereby permit more precise planning
which could take maximum advantage of the steep Bragg Peak (BP) fall-off and reduce damage to tissues sur-
rounding the tumor.
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One way to perform monitoring is to use prompt gammas (PGs), a natural byproduct in particle treatments.
PGs offer the potential of monitoring treatment at the spot level (Roellinghoff et al., 2014; Smeets et al., 2012)
and are therefore of prime interest (Golnik et al., 2014; Gueth et al., 2013; Janssen et al., 2014; Moteabbed
et al., 2011). These particles are produced in the inelastic nuclear collisions between the incident particle
and the medium (tissue) it is traveling through, and they correlate very well with dose deposition. This has
been experimentally demonstrated for protons by Min et al. (2006) and for carbon by Testa et al. (2008). The
latter also showed that adding Time of Flight (ToF) measurement enables the discrimination between neutron-
induced gammas and PGs, greatly cleaning up the signal, which was confirmed by Biegun et al. (2012); Lopes
et al. (2015); Pinto et al. (2015); Roellinghoff et al. (2014); Smeets et al. (2012); Verburg and Seco (2014). The
authors conclude that online range monitoring is possible, once a detector with sufficiently large solid angle
can be realized. In Fall 2015, at OncoRay in Dresden, Germany, a knife-edge PG camera (Perali et al., 2014;
Richter et al., 2016) was put into clinical operation. In addition to geometrical collimation, work is being done
on designs that exploit Compton scattering to record the PG signal (Kurosawa et al., 2012; Roellinghoff et al.,
2011)

Another approach is to use the fact that in certain nuclear reactions PGs with specific energies are produced
(Verburg and Seco, 2014; Verburg et al., 2013). The composition of the produced PG spectrum is dependent
on material and proton energy. Certain PG energies tend to be produced close to the BP; that is to say, the
associated cross sections are largest when the primary is near the end of its range. Analysis of these spectral
lines at given positions may provide sufficient information to deduce both the material composition and BP
position. Verburg et al. exploit this fact to reconstruct the spatial location of the BP falloff position with a single
collimated detector placed at the end of the primary range. Then there is an attempt (Golnik et al., 2014) to
use the travel time of the primary to reconstruct and control the PG range. Using a camera with high timing
resolution and a short, pulsed beam, the ToF between the proton leaving the beam nozzle and the PG arriving
in the camera can be recorded, and by putting the camera close to the nozzle looking back at the patient, we
know that a larger ToF corresponds to more distal interactions, and a smaller ToF to proximal interactions.

Imaging paradigms such as PG detection are validated against experiments, and often also with Monte
Carlo (MC) simulations (Golnik et al., 2014; Gueth et al., 2013; Janssen et al., 2014; Moteabbed et al., 2011;
Robert et al., 2013). Conventional MC methods propagate particles according to a set of physical processes
through materials. The tracking of a particle is broken up into steps, where at each point, a weighted list of
all possible next steps is built and one option is selected by a random number. For rarely occurring processes,
convergence to the model of the truth to within acceptable statistical error can be slow. PG emission in particle
therapy, when viewed on a voxel-by-voxel basis, is also a rare and slowly converging process (Gueth et al., 2013;
Pinto et al., 2015; Sterpin et al., 2015). This has important implications: firstly for detector designers, secondly
for those who simulate, and thirdly for those interested in comparing the two online in, say, clinical conditions.
In the first case, detectors are optimized to minimize signal loss (see fig. 1) and advanced reconstruction can be
employed to maximize the use of information in the signal. Gueth et al. (2013) has demonstrated a method that
works around the low PG yield by using machine learning to correlate predefined patient translations (setup
errors) to PG output signals, which reduces the time to produce an estimated translation based on the detected
PGs. Since convergence to the model of the truth requires long simulation runtimes, we may compensate with
variance reduction methods or cutoffs in the time, space, or spectral domains (e.g. fixed runtime, larger voxel
size, larger spectral bins). One such variance reduction method is MC splitting, where the moment a rare
process occurs not one, but multiple possible futures for that process are computed. The weighted total of
these futures are then stored, and so the convergence accelerated.

Recently, a variance reduction method (pgTLE) was described (El Kanawati et al., 2015). The PG estima-
tion is accelerated by precomputing PG production probabilities as a function of energy and target materials,
with as drawback that it only works for analytical phantoms. Here, we present a two-stage method, voxelized
pgTLE (vpgTLE), that extends pgTLE to voxelized volumes, making it useful for clinical simulations. Next we
describe the method and give some simulation results in various configurations. At this time, only protons as
primaries have been considered and validated. We finish with a discussion of background noise estimation,
other variance reduction methods and points for improvement.
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Figure 1: Approximate progressive loss of PG signal per spot. The particles were recorded in a simulation with
a clinical head and neck CT and associated clinical plan, with a 30-by-30 cm collimator with 43% fill factor, at
40 cm from the patient, with estimated efficiencies (66%) for detection and reconstruction. Note this is not the
configuration investigated in the rest of this paper.

Stage 0:
Generate PGdb

Stage 1:
Compute PGyd

Stage 2:
Propagate PG

through geometry

Figure 2: Flow chart of the vpgTLE method. Stage 0 is an initial PG database (PGdb) and is computed once.
Every subsequent simulation is broken up into Stage 1 and Stage 2. Stage 1 generates a CT specific PG yield
distribution (PGyd) using a limited number of primaries. In Stage 2 the PGyd is used to generate and propagate
a representative set of PGs throughout the geometry.
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2 Materials and Methods

2.1 A voxelized pgTLE

A full voxelized Prompt-Gamma Track Length Estimator (vpgTLE) simulation is broken up into two stages (fig.
2). The process presumes the existence of a prepared database (PGdb) which is an estimate of the effective
linear PG production coefficient modulo the density, per element (ΓΓΓZ

ρZ
, see eq. 1), per PG energy bin per primary

energy bin. The PGdb is computed once for a list of common elements, and can then be reused. In stage one,
a PG yield distribution image (PGyd) is created, specific to a particular phantom (or CT-image) and primary
source (e.g. a treatment plan, a single spot). This PGyd image stores, per voxel per PG energy bin, the yield per
primary. Stage two uses the PGyd and the assumption of isotropic PG emittance to generate and propagate the
PGs throughout the rest of the geometry that the user has defined (e.g. the PG detector).

2.1.1 Stage 0: PG Database

First, as explained in El Kanawati et al. (2015), we precalculate a database of PG production probability per PG
energy, as a function of element and proton energy. Eq. 1 describes the computed quantity: the PG spectrumΓΓΓ

as a function of proton energy E for a set of elements Z . We take the ratio of the number of produced gammas
NNNγ over the number of inelastic collisions Ni nel , scaled by the linear element attenuation coefficient κi nel ,
related to the proton inelastic nuclear process. We normalize with the density ρ of element Z . Bold symbols
represent vectors as function of PG energy. We compute the PGdb for protons up to 200MeV in 250 bins.

ΓΓΓZ (E)

ρZ
= NNNγ(Z ,E)

Ni nel (Z ,E)

κi nel (Z ,E)

ρZ
(1)

Currently, PG emission models and cross sections implemented in various MC codes (Geant4, Fluka, MC-
NPX) are still evolving as differences have been observed between experimental PG data and simulations
(Pinto et al., 2015), and between MC codes (Pinto et al., 2016; Robert et al., 2013; Verburg et al., 2012) and
research is ongoing to improve accuracy. Hence, if cross sections or implementations of models are updated,
the database must be recomputed. In particular, when comparing between simulations, such as in this study
between vpgTLE and a reference analog MC, the same physics list must be used.

2.1.2 Stage 1: Compute phantom-specific PG yield distribution

By performing a low statistic MC, an estimate of the proton track lengths per voxel per proton energy bin is
obtained, hence "Track Length Estimation". Note that "track" corresponds to "step" in Geant4 terminology.
Together with the effective linear PG production coefficient, the PGyd image is obtained.

Before the simulation starts, we query the CT image for a list of present materials and build ΓΓΓm for each
material m encountered. We compute the PGdb in terms of elements, rather than materials, to give the user
the option to add new materials or modify the composition of existing ones without recomputing the PGdb. In
eq. 2, we sumΓΓΓZ over all k constituent elements Z in material mv , weighted by density fraction ωk of element
Z in mv , and scaled by density ρmv .

ΓΓΓm(E) = ρmv

kmv∑

k=1
ωk

ΓΓΓZk (E)

ρZk

(2)

Then, a limited number of particles is propagated from the source of the treatment plan into the target,
typically a patient CT image. We define a 4D scoring matrix in the CT (the PGyd), which may have a different
size and pixel spacing from the CT. Protons are propagated with an unmodified analog MC tracking engine.
Per step, per voxel v in the PGyd, alongside executing the unmodified analog MC processes, we compute and
add the product of the step length Lg andΓΓΓmv (linearly dependent on proton inelastic cross section, see eq. 1),
with mv the material at voxel v and g the proton energy bin, according to eq. 3. Put into words, we compute
the PG yield probability energy spectrum at every step, and add it to the yield of voxel v of the current step.

Ŝ̂ŜSi (v) =ΓΓΓmv (Eg )Lg (Eg , v) (3)

At the end of the simulation, we have accumulated the yield spectra per voxel v . The computed output is
weighted by the number of primaries to obtain the final PG production probabilities per voxel per PG energy
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bin. The PGyd written to disk is therefore per primary, and the sum of all the probabilities is the probability
that a single primary particle will emit a PG.

In order to obtain the variance in this paper, we opted for the classic batch technique. Although El Kanawati
et al. provide an analytical derivation for the variance, they assume no correlation between proton energy and
track lengths. We observed that this assumption does not seem to hold, in that the result is quite different from
the variance obtained with the batch technique. Derivations assuming partial and full correlation are possible,
but we felt that the short run-times of the vpgTLE method, coupled with the simplicity of the batch technique,
and the innate correctness of the variance obtained in such a way, were the best choice for understanding
and presenting this method. Note that this assumes the initial database computed in stage 0 has converged
sufficiently and does not contribute significantly to the variance.

2.1.3 Stage 2: Propagate PG through other geometry (detectors)

The PGyd computed in stage 1 is used as a source of PG emission probability per primary particle. All that
is left to complete the simulation (e.g. record PGs in a detector) is to produce as many PGs weighted by the
source image as necessary. If, say, the user is interested in the PG signal of a 2 Gy fraction, and a 2 Gy fraction is
composed of 1011 protons, the PGyd can be requested to give the expected output for that number of protons.
Each PG is created and then propagated through the patient and into the detector, according to regular ana-
log MC mechanisms. However, depending on the number of PGs the user requires in their detector, a lower
number of PGs may be requested, scaled up, and consequently runtime is lowered.

An important consideration is that we currently assume that PGs are spatially emitted isotropically. Geant4
also adheres to this assumption. This conveniently relieves us from recording any spatial information. How-
ever, there exists evidence to the contrary (Sheldon and Van Patter, 1966; Verburg et al., 2012). Once any possi-
ble anisotropy is introduced in the MC physics models, it can be added to our code. Recording the anisotropy
factor during stage 1 may be an intuitive solution (Henyey and Greenstein, 1941).

2.2 Validation procedure

Each simulation is executed with both analog Monte Carlo scoring and with the vpgTLE method. The analog
MC serves as reference. To obtain an estimate of the statistical uncertainty, we employ the batch technique
and run each type of simulation 10 times. When studying the bias and the relative uncertainty within selected
subregions of the phantoms, σ is computed on the projection considered. That is to say, σ represents the
standard deviation on the mean yield over the 10 simulations. For the study on efficiency and convergence of
relative uncertainty, the variance is computed per voxel. Taking the median of (a subregion of) this 4D ’image
of variance’ (i.e. the median of the variance) provides a stronger test. We take the median rather than the mean
because the variance distribution tends to a log-normal distribution. For skewed distributions such as this the
median is a better measure of central tendency.

2.2.1 Test cases

Two test cases are presented. The purpose of Test case 1 is to verify that the transition to voxels has been done
correctly. The phantom proposed by Parodi et al. (2005) and used by El Kanawati et al. (2015) is converted into
a voxelized representation, see figure 3. In Test case 2 (fig. 4), a clinical head and neck image with correspond-
ing proton therapy treatment plan is examined and is intended as a demonstration of the possibilities of the
vpgTLE method. Precise beam properties may be found in table 1. Compared to El Kanawati et al. (2015), the
number of analog primaries used for the reference are increased from 107 to 109. This is required in order to
obtain a sufficiently noiseless figure for the spatial projection along the beam axis. For the vpgTLE simula-
tions, four simulations are executed with 103, 104, 105 and 106 primaries respectively. Next, we define certain
windows of interest. Knowing that most PG detectors do not measure outside the 1-8 MeV energy range (Testa
et al., 2013), or even narrower (Smeets et al., 2012), we limit our analysis to this energy window. In addition, PG
yield outside the spatial region that represents 90% of the total yield in the reference simulation is discarded.
For all analyses these two cuts are applied.

2.2.2 Bias

To establish the presence of bias, as function of spatial or spectral dimensions, the relative difference with
respect to the reference is investigated. In addition, certain subregions are studied separately for Test case 1,
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Figure 3: Top-down view of the Parodi phantom (Parodi et al., 2005), where the shading represents the material
densities. Parts 1, 3, 6, 9 are PE; 7 is PMMA; 2 is Bone; 5, 8 are Muscle; 4 is Lung. The beam is illustrated with
the dotted line coming in from the left. A voxelized version of this image is created, with a 23 mm3 voxel size.

Figure 4: Sagittal view of the patient CT image, illustrated with the PG yield caused by the associated treatment
plan. A beam from an original treatment plan has been rotated to align with the image axes, to both make
projections easier and to increase the heterogeneity of the materials and thereby increase the challenge to
vpgTLE. The applied radiation is the distal layer of one of the beams of the original plan so that the distal
falloff is better defined in contrast to the spread out Bragg Peak (SOBP). The voxel size is again 23 mm3.
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because material-based regions can easily be isolated.

2.2.3 Efficiency, Gain and Convergence

An important quantity that characterizes a variance reduction method is the efficiency εk , and is computed by
considering the time t required to reach a varianceσ2

k per voxel k, see eq. 4. Comparing the ratio of efficiencies
of two methods gives a quantified gain G (eq. 5, where T LE and A refer to vpgTLE and analog MC respectively).
Using a measure of centrality (e.g. mean, median) on the gains per voxel Gk , a global measure for the efficacy
of vpgTLE is obtained. A histogram of the gains within an image is presented to have an idea of the worst and
best case performance of vpgTLE.

εT LE ,k = 1

t ×σ2
T LE ,k

(4)

G = εT LE ,k

εA,k
(5)

The proposed vpgTLE is a variance reduction method: it reduces the variance for any given PG simulation
with respect to an analog simulation. As a simulation runs, the output converges, which is to say: its variance
reduces. A common measure to ensure sufficient convergence is to require that the uncertainty σ associated
to the quantity of interest is not more than 2% of the signal. A variance reduction technique such as vpgTLE
translates into reaching the threshold faster, and therefore a gain with respect to analog MC. We compute the
gain therefore both by taking the ratio of the runtime of the two methods at the 2% convergence level, as well
as by computing the gain (eq. 5). With the same data, we estimate the total runtime required to produce a
sufficiently converged image.

2.2.4 Influence of voxel size

An essential property of vpgTLE is the fact it records PG production probabilities all along the primary’s path,
instead of waiting for the MC engine to produce a PG. This means that vpgTLE requires much fewer propagated
primaries to touch all voxels. This effect could be magnified further when smaller voxels are used. Recent
developments (Marcatili et al., 2014) in super-resolution or multi-scale CT models involve smaller voxels in
order to increase simulation accuracy for smaller or thinner organs such as the rectum, bladder, or spine. We
demonstrate the increased benefits of vpgTLE on Test case 2.

2.2.5 Hardware, software, parameters

Gate 7.1 (Jan et al., 2004; Sarrut et al., 2014) with Geant 4.10.01 and the QGSP_BIC_HP_EMY physics list, com-
monly used for PG studies, are used in this analysis.

In Gate, scorers are defined as actors, which can be attached to volumes, all defined through the Gate
macro language. The vpgTLE method was implemented as an actor, that keeps a PG spectrum for each voxel,
the number and volume of which can also be controlled through the macro language. A helper actor, that
outputs the analog MC in a similar manner as the PGyd was implemented to facilitate analysis. The output
was validated against the GatePhaseSpaceActor, a thoroughly used and tested part of Gate. We used a gamma
production cut of 3 keV in order to remove a high number of photons that cannot exit the phantom or patient
geometry.

Timing information is obtained with the aid of the GateSimulationStatisticActor, executed on a Intel Core i7-
3740QM CPU @ 2.70GHz, SpeedStep off, whilst using a single core. In summary, table 1 lists the main param-
eters used for the simulations.

3 Results

3.1 Test case 1

First we verified that vpgTLE yields are identical to the results produced with pgTLE, shown in El Kanawati
et al. (2015). Then, we compared our method to the analog reference. Figure 5 depicts the yield on the first
row, as a function of the depth (left column) and the PG energy (right column). The relative difference of the
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Table 1: Summary of vpgTLE analysis parameters

Test case 1 Test case 2

Beam 160 MeV, disc shaped cross- Distal layer (133.08 MeV)

section, Gaussian spatial and of clinical treatment plan

angular distr. with σ of (7 spots)

3.5 mm, 2 mrad respectively

Phantom description Parodi et al. (2005) Clinical head and neck CT

Phantom voxel size 2mm

PGyd voxel size 2 mm 1, 2, 5 mm

PGdb primaries/element 109

PGdb max. proton energy 200 MeV

Number of PG bins 250

Number of proton bins 250

vpgTLE primary-sets 103 −106

Analog primary-sets 106 −109

Reference Analog primary-set 109

Studied projections Spectral and along beam

Extra studies Central voxel line yield Influence of PGyd voxel size

Spatial window 90% yield region

Spectral window 1-8 MeV

Variance computation 10 batches per primary-set

Step size 1 mm

PG yield is shown, both integrated over the entire coronal plane (second row) or at the voxel line on the beam
path (third row). Row one, a plot of the yield, shows a perfect overlap of vpgTLE with respect to the reference.
We must look to the relative differences of the various vpgTLE outputs with respect to the reference in row 2 to
observe any differences. The shaded areas represent 2σ error bands.

With 103 primary particles, the mean is noisiest, as expected. An overestimate beyond 170 mm is visible,
which is about the location of the Bragg Peak. The average relative difference over the depth is 4.0×10−4 along
the beam, which is a good performance, but due to the relative difference with the reference exceeding 1%
in the distal region and the very wide error bands, we would argue 103 primaries is insufficient for a reliable
prediction. The distal systematic shift has reduced when using 104 or more primaries. Two regions with bias
remain: a consistent overestimate of about 0.5% at around 160 mm depth, and then, past the Bragg Peak, an er-
ratic mean with wide uncertainty bands. The latter can be explained by nuclear events. Once a proton collides
and is absorbed, it can no longer produce PGs. Towards the end, the precise number of remaining protons
grows more uncertain, and just 103 primaries are not enough for a good estimate of the variance. Increasing
the number of primaries reduces the uncertainty and improves the mean yield, but the effect remains. The
average relative difference over the depth is of the order of 10−4 for all primary sets.

The spectral column on the right demonstrates vpgTLE is close to the analog reference over the whole
spectrum, with a small fluctuation at the high end of the spectrum. The pattern present for all primary sets
must be due to the PGdb, and is the only bias we observe. The average relative difference varies between
−1.3× 10−4 with 103 primaries and 6.0× 10−5 for 106 primaries. This supports the hypothesis that we have
converged to the bias introduced by the uncertainty of the PGdb. The wide error bands for 103 are again
visible, with the error bands for 104 or more primaries staying within 1% of the mean over the entire range.

The bottom row, the line of voxels centered on the beam path, shows a more erratic behavior. One major
difference is the proximal overestimate and distal underestimate with 103 primaries. With 105 primaries or
less, the average relative difference is on the order of 10−3 or more, while 106 primaries results in 3.6×10−4.
The uncertainty is, naturally larger. The spectral view is stable and the depth view has an increased variance
towards the end of the proton range.
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Test case 1: Yield and Relative Difference
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Figure 5: Test case 1: Row 1 shows the PG yields and row 2 the relative difference with respect to the reference

( v pg T LE−Re f er ence
Re f er ence ). The yield corresponds to the mean over 10 simulations. For both rows, note that the yield

was integrated over all other dimensions. Row 3 shows the relative difference on the line of voxels on the
center of the beam path, where we did not integrate over all other dimensions. The left column is a projection
along the beam-axis, while the right column shows the spectral bins integrated over all voxels considered. The
shaded areas represent 2σ error bands, where σ is the standard deviation over the mean of 10 simulations.
Note that the covarying pattern in the relative difference is due to the noise of the analog signal, and does not
represent any issue with the vpgTLE implementation.
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Figure 6 shows side-by-side the convergence of the median relative uncertainty and a histogram of the
gains computed with eq. 5. We see that a median convergence to within 2% is reached in about 3 minutes and
about 68 hours with vpgTLE and analog MC respectively. At the 2% convergence level, the gain is 1.55×103.
The histograms on the left show that the gains are stable with respect to the number of vpgTLE primaries.
That means vpgTLE has no systematic problems. We can clearly see the skew of the distributions (note the
logarithmic scale on the x-axis). The worst gain is a factor of 6.19×101, while the best voxel clocks in at 5.21×
104, with a median of 1.40×103.

Test case 1: Gain distribution and Convergence

102 103 104

Gain factor w.r.t. Reference

0.0

0.2

0.4

0.6

0.8

1.0

N
u

m
b

er
o
f

vo
x
el

s
(s

ca
le

d
)

vpgTLE gain distribution
Median gain: 1.40× 103

103 primaries

Min: 6.30× 101

Max: 4.64× 104

104 primaries

Min: 6.19× 101

Max: 3.73× 104

105 primaries

Min: 9.03× 101

Max: 5.21× 104

106 primaries

Min: 8.63× 101

Max: 3.21× 104

101 102 103 104 105 106

Runtime t [s]

0

2

4

6

8

10

12

R
el

a
ti

ve
U

n
ce

rt
a
in

ty
[%

]

Median relative uncertainty
Gain: 1.55× 103

vpgTLE, Fit:

2.3×10−1
√
t

Analog, Fit:

8.9×100
√
t

Figure 6: Test case 1. Left, the efficiency is computed, per voxel, according to eq. 4, for all vpgTLE primary-sets
with respect to the reference. Right, the median relative uncertainty as a function of runtime t, for both the
analog and vpgTLE methods. Each successive point is generated with 103 - 106 primaries for vpgTLE, and with
106 - 109 primaries for analog MC. As t increases, the relative uncertainty decreases as Cp

t
, where C is a fit factor.

To compute the gain, we take the ratio of the runtimes at the 2% level, indicated by the dashed horizontal line,
generally considered to be sufficiently converged.

3.2 Test case 2

Look to figure 7 for the yield and relative difference of vpgTLE with respect to the reference. The width of the
2σ-bands has increased with respect to Test case 1. Along the beam, left column of the figure, we see that
103 primaries produce an erratic line, while 105 and up are close to 0%. Past the distal end, we see significant
divergence as in Test case 1. While the average bias is of similar magnitude as in Test case 1 (10−4, except for
103 primaries), on the distal end the bias has not quite dissipated with 106 primaries. A likely explanation for
the worse performance is the different beam with respect to Test case 1: now we look at the yield caused by a
full energy layer composed of 7 spots, resulting in the primaries being spread over a larger volume and result
therefore in lower statistics per voxel. We can again attribute part of the increase in error to the systematic
error induced by the PGdb. The spectral view is as stable as in Test case 1, which is spread over the same 250
bins, and differs only by wider error bands.

Figure 8 shows the convergence and gain of vpgTLE for Test case 2. The gain is slightly less than in Test
case 1. A sufficiently converged PGyd now requires little over 4 hours on a single core with vpgTLE and about
180 days with analog MC. Excluding the 103 primary-set because of its outliers, the worst gain is 2.70×101 and
the best is 8.96×104, with a median gain of 9.98×102, and a gain of 1.03×103 at 2% relative uncertainty.
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Test case 2: Yield and Relative Difference

0 20 40 60 80 100 120 140 160

0.0

0.5

1.0

1.5

2.0

In
te

gr
at

ed
Y

ie
ld

[P
G

/p
ro

to
n

/b
in

]

×10−3

1 2 3 4 5 6 7 8

0.0

0.5

1.0

1.5

2.0
×10−3 103 primaries

104 primaries

105 primaries

106 primaries

Reference

0 20 40 60 80 100 120 140 160

Depth [mm]

−3

−2

−1

0

1

2

3

In
te

gr
at

ed
R

el
.

D
iff

.[
%

]

1 2 3 4 5 6 7 8

PG energy [MeV]

−3

−2

−1

0

1

2

3

Figure 7: Test case 2. Row 1 shows the PG yields and row 2 the relative difference with respect to the refer-

ence ( v pg T LE−Re f er ence
Re f er ence ). For both rows, note that the yield was integrated over all other dimensions. The left

column is a projection along the beam-axis, while the right column shows the spectral bins integrated over
all voxels considered. The shaded areas represent 2σ error bands, where σ is the standard deviation over the
mean of 10 simulations.
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Test case 2: Gain distribution and Convergence
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Figure 8: Test case 2. Left, the gain histogram is shown, for all vpgTLE primary-sets with respect to the refer-
ence. Right, the mean relative uncertainty is plotted as a function of runtime, for both the analog and vpgTLE
methods. Each succesive point is generated with 103 - 106 primaries for vpgTLE, and with 106 - 109 primaries
for analog MC. We take the ratio of the runtimes at the 2% level to obtain the gain.
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The last result is the effect of changing the PGyd voxel size on the gain. We have observed in figures 6
and 8 that the gain distribution is independent of the number of primaries. Hence, in order to save time, we
conduct this investigation with 107 primaries for analog MC and 104 for vpgTLE, which are at a similar level
of convergence (see fig. 8). The gain ratio is computed as the ratio between these sets, per voxel size. Due to
memory consumption considerations, the minimum voxel size was set at 1 mm3, which results in an image of
1666 MB (833 MB on disk).

Figure 9 shows the gain histograms for each voxel size. It can be seen that the advantage of vpgTLE mag-
nifies with respect analog MC as voxel size decreases. This is in agreement with the hypothesis that vpgTLE
needs fewer primaries with respect to analog MC to estimate the PG yield. Users interested in super-resolution
output can expect higher gains than reported for our two test cases.

Test case 2: gain as function of voxel size
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Figure 9: The distribution of gains of a vpgTLE simulation (104 primaries) w.r.t. an analog MC (107 primaries)
are plotted. The distribution, and the medians, shift up as the voxel size decreases.

4 Discussion

4.1 Tradeoffs

The current implementation of vpgTLE stores each bin as a double (64 bit) in memory, and converts to float
(32 bit) when writing to disk. The memory consumption is therefore linked to the number of PG bins, image
and voxel size. By default the vpgTLE actor will copy the size and voxel size of the image it is attached to.
As described before, for clinical CT images this will result in on-disk images of tens of GBs, and twice that in
memory usage during the simulation. In this paper, we therefore shrank the PGyd volume to a region that
envelops the PG production sites with some margin (see figure 10). This resulted in an on-disk image size of
about 104 MB. With 1 mm3 voxels, the image size increases eight-fold to 833 MB (double at runtime: 1666 MB).
A PGyd with the size of the CT data used in Test case 2 with 1 mm3 voxels would blow up to 120 GB on disk, 240
GB in memory at runtime.

Storing the intermediate PGyd is similar to the practice of storing intermediate phasespaces in complex ac-
celerator simulations. A nice side-effect of having two stages is that if the user for instance wants to reposition
a detector or compare different detectors altogether, only the PGs have to be re-propagated.

Before Stage 1, a number of important parameters are set: the number of primaries per element in the
PGdb, the minimum, maximum and number of bins for both the primary and PG energy. Naturally, more
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Test case 2: PGyd output region

Figure 10: The region of the PGyd was set to a smaller region than the patient CT image, in order to reduce
memory consumption. The region of the PGyd is visible as green, with the PG production visible as red bands.

primaries increases the quality of the estimate, while more bins spanning a wider range improve the preci-
sion, but slow down the convergence to an acceptable mean or median uncertainty. Assuming a maximum
primary energy of 250 MeV, we need 250 bins for a precision of 1 MeV. The current implementation has linear
binning, so assuming the location of the BP fall-off is of interest, where the primary energy is lowest, a 1 MeV
bin translates to a proton range in water of about 24 µm, more than enough considering the typical 23 mm3

voxel size. Note that computing the PGdb for more bins requires more particles to ensure proper bin filling. It
took approximately 1000 days of CPU-time to compute the PGdb used in this study.

4.2 Comparison with other variance reduction techniques

A conventional approach to variance reduction for rare processes is interaction biasing (IB), where the proba-
bility of the interaction of interest is multiplied with factor α, and is compensated for by decreasing the weight
of the continuing track (and secondaries) with factor 1

α . Parameter α is then chosen such that an interac-
tion occurs once per interval of interest (say, once per voxel). Alternatively, interaction forcing (IF) forces an
interaction per interval, and weights any subsequent interaction with the probability that former interaction
occurred. As the incident particle may be killed in the process of interest (as is the case for PG production),
some implementations (e.g. MCNPX, Geant4, EGSNRC) split the track into a collided and uncollided version
to prevent the loss of statistics in the distal part of the track.

Another standard technique for rare processes is particle splitting: instead of producing a single new par-
ticle in the interaction of interest, N particles are produced, each with weight 1

N . This method may be applied
in addition to IB or IF. Storing the whole PG spectrum in Stage 1 and sampling it in Stage 2 could be viewed as
delayed particle splitting. Not implementing the separation between Stages 1 and 2 would have been possible
by directly generating a PG from the spectra computed in Stage 1 as the protons traverse the phantom.

When considering IB, the main disadvantage is the free parameter α, which should be chosen in such a
way that sufficiently often a PG is produced. What sufficiently often means will depend on each individual
simulation. Moreover, the PG prediction is still a probabilistic process: in some voxels a PG may be produced,
in some may not. IF is much more similar to vpgTLE, in that it gives a deterministic prediction per interval.
Having a larger number of calls to the physics processes is the main source of overhead for both IB and IF.
For example, in an analog Geant4 simulation, we measure that 70% of computing time is spent in nuclear
interactions. In a naive implementation of IB or IF, we run through the nuclear interactions an increased
number of times, which indicates that the upper limit of the gain is 1

70% ≈ 40%. Both IB and IF may benefit
from precomputed lookup tables to reduce the time spent performing the additional interactions. Lookup
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tables are most practical if a single or limited number of outputs are sought, e.g. dose, PG.
Indeed, vpgTLE may be considered as a special optimized case of IF with the following differences:

• the Monte Carlo particle weights are not modified
• whole inelastic processes are precomputed instead of being called at each interaction
• the complete precomputed gamma energy spectrum is stored

The two last points can also be applied to IF implementations. Hence, PG yields per proton track remains
essentially the same between IF and vpgTLE. The difference may essentially be viewed as conceptual, vpgTLE
being inspired by the TLE approach originally put forward by Williamson (1987).

Test case 2: PG spectra as function of depth.
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Figure 11: vpgTLE allows one to make full use of spatial and spectral information of PGs. As an illustration,
this figure shows a heatmap of PG yields in Test case 2 as function of depth and PG energy, integrated over the
transverse dimensions. The figure might incline a detector developer to tune a spectral camera to the 4.4 MeV
peak.

As far as the authors of this paper could establish, the only other published variance reduction technique
for PGs is described in Sterpin et al. (2015). This method is fully analytic, incorporating experimental or pretab-
ulated PG emission data and a model that assumes the PG emission region can be modeled similar to the dose
in pencil beams. The method raytraces the materials touched by a pencil beam spot, and computes the ex-
pected 1D PG profile by a weighted sum of pregenerated profiles per material, which takes 0.3 to 10 seconds.
The authors admit that this approach does not deal very well with lateral inhomogeneity, a problem that vpg-
TLE does not have due to TLE methods in principle being assumption free. Another benefit of vpgTLE is the
shape of its output: a 4D image where for each voxel a PG spectrum is recorded. This permits the incorpo-
ration of the method in many different kinds of PG detector simulations, not just detectors that measure the
range. As a small example, vpgTLE can be used to investigate the origin of the global spectrum as function of
depth along the beam path in figure 11. vpgTLE will work with any collimated or Compton camera design, PG
spectroscopy, or any future detector that takes advantage of spatial or spectral components. Moreover, vpg-
TLE does not assume anything about the proton flux: it uses Stage 1 to estimate it. The difficulty estimating
PG yields due to beam spots that produce different ranges due to lateral inhomogeneity is therefore avoided:
vpgTLE is as sensitive to inhomogeneity as regular MC.

4.3 Background estimation

vpgTLE does not estimate other physical quantities than PGs produced in the target, which means no esti-
mate of the background noise can be obtained with this method. For any detector seeking actual application,
no analysis is complete without considering the signal-to-background ratio, and methods to improve it. The
background consists of tertiary gammas, mainly produced by secondary neutrons undergoing nuclear inter-
actions, in the target but also in elements of the beamline, other objects in the room such as the patient table,

15
70



and the detector itself (Pinto et al., 2014). Obtaining the background from simulation is problematic for two
reasons:

1. No MC tool correctly estimates the background (see Pinto et al. (2014) section 3.1.2, Sterpin et al. (2015)
section IV.A.4). Nuclear reaction models are continuously improved, but as far as we know not specifi-
cally for PG background at this time.

2. The computing time required for full room simulations is prohibitive, which is why room modeling is
left out. Even without room components, the simulation runtime is still long using analog MC, as there
are no variance reduction techniques for PG background.

Depending on the purpose of the simulation, various ways of dealing with the lack of reliable MC back-
ground prediction are considered. Sterpin et al. (2015), concerned with treatment prediction, deals with the
background by adding an offset parameter to their fitting procedure of the PG profiles and accept the absence
of background estimation in their fast PG method. A procedure like this could be applied for other devices.
Simulations for camera optimization, effectively signal-to-background optimization for a multitude of config-
urations, also require a background estimate. Because the background may depend on camera parameters
and obtaining a measured background for each configuration is not tractable, most groups limit the num-
ber of configurations. The multi-slit camera optimization of Pinto et al. (2014), which correctly does consider
hundreds of configurations, was performed with a manual correction of a single background measurement.

Hence, the fact that in current practice the background is measured or modeled separately, puts vpgTLE at
no particular disadvantage compared to other variance reduction methods or analog MC. However, if physics
models could give an accurate estimate of the background, a generalized vpgTLE, most urgently of neutrons
and neutron induced PGs, might be a possible avenue for variance reduction of the background estimate. The
scorer could be attached to not only the target but other objects in the treatment room.

4.4 Future improvements

We did not take into account the systematic error (caused by the PGdb) in our analysis. The PGdb is computed
by shooting protons of an energy at least as high as used in the treatment plan into a box of a certain material.
This means that at low energies, the PGdb statistics are not as good as at higher energies, meaning that we have
a systematic error around the BP region (where the proton energy is lowest). We might therefore consider to
supplement our PGdb with the output of a second, low energy proton beam, simply to reduce the systematic
error in the BP range. Since we compute the PGdb once, this has no effect on the efficiency of the vpgTLE
method. It might also be possible to fill the database by querying Geant4 for the cross section at the respective
bins. We did implement outputs for the analytic systematic and random error output as laid out in El Kanawati
et al. (2015), but Stage 2 does not propagate these errors yet, which would be required for a quantitative analysis
of the outputs of Stage 2. Moreover, we found that this analytic error estimate underestimates with respect to
the batch method, because it assumes the independence of the track lengths and proton energies, a type of
problem IF or IB techniques would not have. Therefore, at this time, the variance of vpgTLE can only be
obtained by employ of the batch method.

A thorough analysis of the sparseness of the PGyd has not been conducted, but there is a likely opportunity
for memory optimization here. Another option is to reduce the dimensionality of the image to that which the
user requires. Users investigating their collimated camera may for example set the PG spectrum to a narrower
window and a coarser binning, reducing memory consumption accordingly.

Precomputing an effective linear production coefficient, the main principle of vpgTLE, could be performed
for other particles. Adding for instance an effective linear neutron production coefficient may supplement the
vpgTLE output with a correct estimate of neutron-induced gamma noise in a PG detector, giving an indication
of the background, not just the PG signal. However, such an addition must be investigated to obtain the real
efficiency.

5 Conclusion

vpgTLE is a generic drop-in alternative for computing the expected PG output in voxelized geometries. The
method has a fixed memory requirement (a 4D image) with a typical memory size of the order of a few hundred
MB. The method reaches a global gain factor of 103 for a clinical CT image and treatment plan with respect to
analog MC. A median convergence of 2% for the most distal energy layer is reached in approximately four hours
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on a single core, at which point the output has stabilized to within 10−4 of an analog reference simulation,
when the range or the spectrum is considered. The authors think the method is of interest to those developing
and simulating PG detection devices, as well as clinicians studying complex clinical cases that require the
precision and accuracy of MC level simulations not offered by analytic algorithms.

The vpgTLE method is open source and fully integrated in Gate. It is available from release 7.2 onwards.
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4.8 Notes on the article

A method that offers an accelerated estimation of PG yields in clinical proton therapy simulations
has been presented. The method is useful for detector developers interested in system optimization:
many permutations of different tunable parameters would need to be graded in terms of their per-
formance in a MC simulation, as done by Pinto et al. (2014). As mentioned in the article, at this time
vpgTLE does not estimate noise, which is absolutely a problem, but not a disadvantage to any other
variance reduction methods, and likely not even to analog MC, as no validation of PG noise has been
carried out so far for any simulation method. Which is not to say such investigations in the estima-
tion of noise would not be interesting. Current studies tend to infer a simple analytical description
of the noise based on measurement, and the question is to what extent this in insufficient.

In addition, vpgTLE might be used for clinical PG estimation for particular case studies. As de-
scribed in the article, some alternative estimation methods exist. At PTCOG55 in Prague in May 2016,
a poster presented work towards an analytic PG estimation integrated into treatment planning pro-
gram. Analytical methods might need validation against MC, and vpgTLE may be used in that case.
In addition, analytic estimation may be unable to reproduce correct PG estimates in complex CTs
and plans, and here MC and vpgTLE could be used instead.

On reflection on this work, the analytic variance computation deserves further mention. Al-
though implemented, it was found that the analytic variance gave a variance over a magnitude more
optimistic than the batch method. The analytic variance was derived with the assumption that the
scored tracklength per proton energy bin are independent between events. In El Kanawati et al.
(2015) equation 4, this assumption is used to rewrite the explicit sum over n events as the average
tracklength: the sum over proton energies and events have no crossterms. In appendix A, courtesy
of Jean Michel Létang, a detailed note on the assumption of tracklength distribution is included,
including a derivation of the variance with full correlation. These two assumptions represent two ex-
treme cases (the correlation is likely neither zero nor one), and plots show that the statistical variance
obtained with the batch method indeed lie between the two analytical extremes. The assumption
of complete independence conveniently removes a nasty crossterm that would require us to score
tracklengths per event or per 2D proton energy bin (see triangular sum in eq. 4 of appendix A). This
was implementation is possible for the analytical phantoms that El Kanawati et al. (2015) considers,
but are untenable in voxellized circumstances: memory usage would multiply with the number of
proton bins. In our case, that would mean ≈ 2 GB × 250 = 500 GB of memory is required to run the
simulation. Therefore, we can only compare the analytic statistical variance under the independence
assumption and the batch method, which can be seen in fig. 4.1.

Another PG estimator was published very recently (Schumann et al., 2016). A ’filter kernel’ was
developed, that after convolution with the 1D dose profile, produced by either MC or an analytic
dose engine part of a treatment planning package, produces a 1D PG profile. Moreover, an evolu-
tionary method was developed to infer the dose based on a measured PG signal. In brief, a set of 1D
dose profiles are generated, their associated PG estimates computed, and those profiles that match
best the detected PG profile are allowed to survive. The next iteration is generated by applying a
set of horizontal, vertical and local shifts to the 1D dose profiles and then again the new profiles are
matched against the measurement. The paper states that about 1000 generations are required at the
moment, which sounds possibly time consuming, but no performance numbers are presented. Only
the 1D range seems to be considered, so no lateral prediction may be derived. In conclusion, while
the methodology for inferring dose from the PG profile is intriguing, it seems that the applicability is
much more limited than vpgTLE. Also, the apparent lack of sensitivity to lateral effects may limit the
clinical use.
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Figure 4.1: The statistical variance obtained in two ways is compared on a clinical CT with a treat-
ment plan composed of opposing beams. Comparing the independent analytical statistical variance
with the batch variance shows that the analytical gives an underestimate. It is expected, and shown
for analytical phantoms, that the fully correlated analytical statistical variance would overestimate
compared to the batch variance.
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Chapter 5

Performance of Prompt Gamma fall-off
detection in clinical simulations

In this chapter the first start-to-end clinical simulation of two optimized collimated PG cameras will
be presented. Also, spot grouping methods based on the notion of iso-depth and iso-energy are com-
pared. A small study of clinical spot weights was performed. Finally, a figure of merit is presented that
provides an estimate of the probability of a measured FOP falling within or outside of the expected
mean ±2× standard deviation. The chapter is intended to be submitted to Physics in Medicine and
Biology. Before the submission, the spot grouping results will be expanded to include results for the
iso-depth and iso-energy grouping based on all three spots studied.
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Abstract

Purpose: There is interest in the particle therapy community to use Prompt Gammas (PG) for treatment
verification and eventually dose control. As the first detectors are deployed in clinical setting, we present
a feasibility study of PG fall-off position (FOP) estimation using PG cameras with active beam delivery; the
first where CT, treatment plan (TP) and beam description are all clinical data. Firstly, we investigate TP spot
weight compositions, to establish what typical clinical spot weights are. Then, the statistics required for a
consistent FOP estimate is investigated for two PG detectors. Finally, a spot-grouping method is proposed
that combines better measurement statistics with fall-off preservation.

Materials and Methods: Our starting point is a study of spot weight distributions, based on TPs provided
by various proton clinics in Europe. A head and neck case with a CT and replanning (RP)CT was selected for
the PG detection study. A proton TP was constructed on the CT according to clinical protocols and irradi-
ated in silico on both CT and RPCT. During the irradiation, two PG cameras implemented according to their
published specifications, a multi-parallel-slit (MPS) and knife-edge (KES) camera, recorded the PG profile. A
simple FOP estimation algorithm is presented, and executed on 20 CT and 20 RPCT realizations to obtain a
shift distribution. A selected spot has its weight modulated, in order to study shift distributions as function
of the spot weight, for each camera. Then, an iso-depth ion-range based spot-grouping method is presented
and compared to iso-energy spot-grouping.

Results: Three spots were selected for an in depth study, and at the prescribed spot weights were found to
produce results of insufficient precision, rendering usable clinical output on the spot level unlikely. When the
spot weight is artificially increased to 109 primaries, the precision on the FOP reaches millimetric precision.
On the FOP shift the MPS camera provides between 0.77 - 1.15 mm (1σ) precision for the three spots at 109

protons; the KES between 1.93 - 2.25 mm.
Conclusion:
While with spot measurements the measured shift was in agreement with the PG emissions shift, for both

grouping methods this was not the case, unless the emissions was convolved with a point spread function
to estimate the detected signal. The precision on the shift obtained with iso-depth grouping improved sig-
nificantly with respect to iso-energy grouping for the KES camera (1σ = 3.82 and 2.87 mm, iso-energy and
iso-depth resp.), but not significantly for the MPS (1σ = 1.17 and 1.05 mm, iso-energy and iso-depth resp.). It
is shown that grouping spots does not necessarily negatively affect the precision compared to the artificially
increased spot, which means some form of spot grouping can enable clinical use of these PG cameras, if the
sum of the spot weights is at least 109 proton primaries. With all spots or spot groups the MPS has a better
signal compared to the KES, thanks to a larger detection efficiency and a lower background level due to time
of flight selection.

1 Introduction

The well-defined range of particles in matter is the main reason they are used in cancer treatment today. Unfor-
tunately we are not able to take full advantage of this property, because of uncertainties in patient positioning,
uncertainties on the proton range due to unknown displacements or deformations of organs, ill-defined lung,
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bowel or bladder filling, weight loss, and the inherent uncertainty in the Hounsfield unit to particle stopping
power conversion (Paganetti, 2013). Often, medical practice is to plan conservatively, namely adding margins
around the tumor, greatly reducing the potential benefits of particle treatment (Knopf and Lomax, 2013). For
example, irradiation fields with organs at risk (AOR) located just behind the Bragg Peak (BP) position are usu-
ally avoided, although they would better spare the AOR. Some form of in-vivo, online monitoring is generally
considered to be a way out of this predicament. Online monitoring would make measurements of uncertain-
ties such as mentioned above possible, and thereby permit more precise planning which could take maximum
advantage of the steep BP fall-off and reduce damage to tissues surrounding the tumor.

Currently treatments can be verified by way of (offline) PET (Kraan, 2015). Integrating PET imaging in
the beam gantry to reduce the effect of washout is beinga investigated (Sportelli et al., 2013). Another way
to perform monitoring is to use prompt gammas (PGs), a natural byproduct in particle treatments. PGs offer
the potential of monitoring treatment at the spot level (Roellinghoff et al., 2014; Smeets et al., 2012) and are
therefore of prime interest (Golnik et al., 2014; Gueth et al., 2013; Janssen et al., 2014; Moteabbed et al., 2011).
These particles are produced in the inelastic nuclear collisions between the incident particle and the medium
(tissue) it is traveling through, and they correlate strongly with dose deposition. This has been experimentally
demonstrated for protons by Min et al. (2006) and for carbon by Testa et al. (2008). A knife-edge PG camera
(Perali et al., 2014; Richter et al., 2016) was put into clinical operation in fall 2015, at OncoRay in Dresden,
Germany. The aim of such collimated cameras is to obtain a 1D profile of the PG production along the beam
direction and obtain the position of the fall-off of the signal, which is strongly correlated to the BP position.
Other approaches include detection of the target materials using a spectral PG camera (Verburg and Seco,
2014), using the primary particle’s time of flight (ToF) in a timed PG measurement (Golnik et al., 2014) and
Compton camera designs (Kurosawa et al., 2012; Llosá et al., 2016; Polf et al., 2015; Roellinghoff et al., 2011;
Solevi et al., 2016; Thirolf et al., 2016).

Here we present an in silico study of the clinical relevance of fall-off position (FOP) estimation, based on
two collimated PG camera designs: a multi-parallel-slit (MPS) and knife-edge (KES) design. First, we start
with an analysis of the composition of clinical treatment plans (TPs). The main determinant for the available
PG signal is the number of primary protons per quantity of interest (whole treatment, iso-energy layer, spot or
otherwise). Depending on target type, location, and size the spot distribution varies. That is to say: the number
of spots, their average number of protons and their energy distribution have consequences for PG detection.
Then, a brief analysis of the data and some treatment planning effects are presented in context of these spot
distributions. In the second part of this paper, performances of the two PG cameras are studied on a clinical
case, fully implemented in Gate. For a patient with a cranial tumor, significant weight loss was observed and
a replanning CT (RPCT) obtained. The planning and replanning CTs provide an excellent ’easy’ case where
PG camera should reliably detect the difference. We begin with a study of the minimum number of protons
required for a reliable FOP retrieval. To conclude, we propose two spot-grouping methods that improve the
reliability of fall-off retrieval.

2 Materials and Methods

2.1 Preliminary observations / Clinical Analysis

PG literature often quotes 108 protons as the reference number of primaries per spot in proton therapy. Pre-
cision estimates are therefore usually obtained for statistics of this order, although higher spot intensities are
not uncommon, even in phantom studies (Priegnitz et al., 2016). Spot-by-spot (range) verification with one or
two millimeter fall-off retrieval precision would be the eventual result, which is very appealing. We conducted
a small study into the spot weight prescribed by current treatment planning software (TPS) to help focus the
targets that PG cameras must be able to reach. Apart from detector performance and PG discrimination, the
main determinant of the PG signal is, after all, the spot weight.

2.1.1 Treatment plan analysis

In Smeets et al. (2012) the composition of a particular TP is displayed: a scatter plot of the spot intensity as
function of the proton energy. In greyscale the 1σ precision on the fall-off retrieval with the IBA Knife-Edge
PG camera prototype, at that time, is colored in. Only for the spots with the highest intensities is the precision
lower than 2 mm. Our Elekta Xio TPS produces similar maximum spot intensities. Our TPs are created for an
IBA proton accelerator with scanning nozzle (Grevillot et al., 2011), which have some spots with 108 primaries
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at their top ends. More modern accelerator designs are able to produce smaller spots, more closely packed, in
order to increase dose conformity. Alternatively, moving the patient closer to the beam nozzle, non-isocentric
planning, is a recent development Grevillot et al. (2015) enabling smaller spots. TPS uses the higher number of
spots to produce more conformal TPs, at the ’cost’ of a lower average spot-intensities. Our TPS produces plans
with about 500 to 1000 spots per field, while newer accelerators and associated plans may have thousands of
spots per field (see figure 3).

We analyzed a small set of clinical TPs to establish what clinical spot counts and proton counts per spot
(spot weights) are, of which we present three ’archetypes’ obtained from Uppsala University Hospital: a low
precision case, a typical, medium precision case and a high precision case.

1. Low precision: Arteriovenous Malformation (AVM) case, figure 1.

107

108

S
p

o
ts

N
r.

p
ro

to
n
s

Total nr of primaries: 7.16× 1010. Mean spot weight: 4.67× 107

Field 1
456 spots
16 layers

Field 2
438 spots
18 layers

Field 3
638 spots
23 layers

95 105 115 125

E [MeV]

107

108

109

L
a
y
e
rs

N
r.

p
ro

to
n
s

90 100 110 120

E [MeV]

70 90 110

E [MeV]

100

101

102

S
p

o
t

c
o
u
n
t

Figure 1: TP for a Arteriovenous Malformation (AVM) case, provided by Erik Almhagen and created in the
Uppsala University Hospital, Sweden. On top: the spots are binned as function of energy and spot weight
(number of protons), with high spot counts in red (hot spots) and low spot counts in blue (cool spots).

AVMs are not cancers, but tangles of blood vessels that divert arterial blood from the brain. The dose
tolerance is high (up to 10%) in such cases. This high tolerance leads to fewer spots, with on average a
higher proton count, which enables a quicker TP delivery and therefore higher patient throughput.

2. Typical precision: Meningioma case, figure 2.
Cases such as these are common in Uppsala University Hospital. These medium tolerance plans involve
a lower average proton count per spot with respect to the AVM case. Some spots reach the type of statis-
tics that is commonly quoted in PG literature. This being a good representation for typical plans insofar
we have been able to establish, it would be correct to uphold 108 protons as typical for the maximum
weight spots. As presented in the figure, the mean spot-weight here is 1.08 ·107.

3. High precision: a large and complex pediatric brain and spine case, figure 3.
Smaller spots, and therefore more spots, are used in plans where dose conformality is more pertinent.
Much lower tolerances than usual are set because the patients are young and the side-effects must be
minimized, which explains why the spot-count is over an order of magnitude more than the other TPs.
This increase is accompanied with a decrease in per spot proton counts. The mean spot weight does not
exceed 107, with the majority of spots below this number.

In conclusion, the number of spots can vary over more than an order of magnitude per plan, and therefore
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Figure 2: TP for a Meningioma case, provided by Erik Almhagen and created in the Uppsala University Hospital,
Sweden.
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Figure 3: TP for a large and complex pediatric brain and spine case. The left two fields are for the brain, the
right two for the spine.
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spot intensities inversely vary over an order of magnitude as well. The trend most plans follow is roughly an
oval spot distribution, tilted towards a positive correlation with energy. Translated to energy layers, the in-
tensities roughly follow a forwardly skewed normal distribution. The negative correlation between the typical
spot weight and plan robustness is an important observation, and presents a challenge: in robust plans where
precision is required, and treatment verification seems most pertinent, PG cameras must be able to deal with
lower spot weights than previously anticipated.

2.1.2 Iso-energy layers vs. iso-depth layers

An evolved version of the IBA Knife-Edge PG camera has been put into clinical testing at OncoRay, Dresden
(Richter et al., 2016). Because at the moment of the test, this facility had passive beam shaping, PG imaging
could only take place on the iso-energy layer level. Apart from the most distal and proximal layers, per-layer
weights are close to or over over 109 primaries. This can be explained by the fact that tumor shapes are typically
globulous, which means the most deeply penetrating energies only have to cover a small part of the transverse
field (fig. 4). Depending on the entrance position, the tumor shape and any (large) density deviations in the
beam paths, an iso-energy layer in general does not correspond to a iso-depth layer. However, a collimated PG
camera measures the PG yield as function of position along the beam axis; it measures PG yields per iso-depth
layer. Collected counts per iso-energy layer then implies range mixing.
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Figure 4: A schematic view of a patient (light gray), planned treatment volume (peach-pink), and a proton
beam (black horizontal lines coming in from the left). Superimposed are various spots, where the size of the
circles indicate spot weights. The spot colors indicate the iso-energy layer of which the spot is part. On the
right, the weights (proton counts) per iso-energy layer are plotted, in similar fashion to fig. 2. On top, the PG
profile is sketched for an iso-energy layer. On the bottom, the PG profile is sketched for iso-depth layer (spots
of various color on the dotted line). In violet and red, the four dots on the distal end of the two most central
beam lines, the effect of interpolation is illustrated: not always is every distal spot planned with a high weight.

In particle therapy and particle therapy imaging literature we often see it mentioned that a spread out Bragg
Peak (SOBP) is achieved by giving the most distal iso-energy layer the highest weight and each successive
iso-energy layer is of lower energy and of lower weight. This is correct on the spot-level, for homogeneous
phantoms, and when interpolation is not required. Interpolation happens when the energy levels of the beam
delivery system do not correspond with the distal tumor contour (Clasie et al., 2012), in which case the dose
contour is approximated by spreading the distal dose of the nearest two possible energies. In general, for
clinical cases, the correlation between energy and range is only true in a general sense, as supported by the
vertical spread in fig. 2. The maximum weight spots are often seen in one of the most distal energy layers
but not necessarily in the most distal one. Moreover, the weights of the distal layers are rarely the highest, so
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the accepted wisdom of the distal iso-energy layer being the most intense and thus most pertinent to range
verification, must be challenged.

2.2 PG camera modeling

As PG detectors we chose two prototypes that are tailored to FOP verification (illustrated in fig. 5):

• the CLaRyS multi-parallel-slit (MPS) camera, Case 1 (Pinto et al., 2014)
The paper describes the optimization study of a multislit camera, where parameters such as collimator
pitch, axis-to-collimator and axis-to-detector were varied, and their impacts evaluated on three criteria:

– Case 1: best precision on the FOP
– Case 2: best precision on the profile length
– Case 3: best precision on the FOP with a FoV lower than 15 mm

Each criterion resulted in a different optimal configuration. We are interested in the fall-off retrieval
performance, which is why we select Case 1. As was done by Pinto et al. (2014), the lengths are chosen
up to 300 mm, such that the length is an integer multiple of the pitch size, with for the collimator a
collimator-leaf-width extra, to ensure each pixel has a leaf on both sides. With the 8 mm pitch and 2.6
mm collimator-leafs, this results in a scintillator volume of length 296 mm and collimator length 298.6
mm.

• the IBA knife-edge (KES) camera (Perali et al., 2014; Sterpin et al., 2015)
The IBA knife-edge camera has seen the first clinical test of a PG camera. Richter et al. (2016) provides
the first clinically obtained results. At this time, no other camera has been subjected to clinical tests,
which is why we consider this prototype a benchmark.

An important detail is the fact that Pinto et al. (2014) carried out the optimization with a ToF selection
window. Such a selection removes part of the background, based on the fact that the PG production is pulsed
synchronous to the beam, while neutron-induced background is delayed. For the IBA C230 accelerator with
a period of 10 ns, Pinto et al. (2014) chose a window of 4 ns around the PG maximum, based on experimental
ToF spectra. This means that about 60% of the noise could be removed. For the KES prototype ToF is not used,
leading to a higher background, as is evident when one compares the backgrounds as published in the two
publications. A second difference is the energy selection window. The IBA group employ a 3-6 MeV window,
whereas the CLaRyS collaboration produced their optimization with a 1-8 MeV window. We will compare each
camera with their published properties, that is to say: a 1-8 MeV window and ToF for MPS and a 3-6 MeV
window without ToF for KES.

2.3 Simulation

Imaging paradigms such as PG detection are validated against experiments, and often also with Monte Carlo
(MC) simulations (Golnik et al., 2014; Gueth et al., 2013; Janssen et al., 2014; Moteabbed et al., 2011; Robert
et al., 2013). For rarely occurring processes such as PG simulation, convergence to the model of the truth to
within acceptable statistical error can be slow. This paper presents an in silico study of the feasibility of the
clinical relevance of PG FOP estimation using collimated cameras (section 2.2), and uses the vpgTLE variance
reduction method described in Huisman et al. (2016). In brief, a full voxelized Prompt-Gamma Track Length
Estimator (vpgTLE) simulation is broken up into two stages. In stage one, a PG yield distribution image (PGyd)
is created, specific to a particular phantom (or CT-image) and primary source (e.g. a treatment plan, a single
spot). This PGyd image stores, per voxel per PG energy bin, the yield per primary. Stage two uses the PGyd
and the assumption of isotropic PG emittance to generate and propagate the PGs throughout the rest of the
geometry that the user has defined (e.g. the PG detector).

Gate 7.2 (Jan et al., 2004; Sarrut et al., 2014) with Geant 4.10.02 and the QGSP_BIC_HP_EMY physics list,
commonly used for PG studies, are used in this analysis. Stage 1 is generated once (taking between 1 and 2
hours) and Stage 2 corresponds to a realization in the rest of this paper, and takes about 1-2 hours with 109

protons. (No protons are propagated in Stage 2, but the number of photons propagated is always proportional
to the proton count, by way of the cumulative PG production factor of the PGyd.) These durations are obtained
with a single core on an Intel(R) Core(TM) i7-3740QM, and could easily be parallelized.
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Figure 5: Schematic presentation of the two PG cameras considered in this study. The green arrow represents
the proton beam. In red the collimation elements and in blue detection elements. The dimensions were taken
from Pinto et al. (2014) and Perali et al. (2014); Sterpin et al. (2015). Note that the two cameras were positioned
at an identical location above the head during all simulations.
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2.3.1 Background estimation

Background estimation in PG simulation is a difficult and largely unsolved issue (Huisman et al., 2016; Per-
ali et al., 2014; Pinto et al., 2014; Sterpin et al., 2015). Simulations would ideally include beam nozzle and
whole room modeling, but these are habitually omitted because of the laborious work involved. ToF selection
techniques can improve the signal-to-noise ratio (SNR) (Testa et al., 2008), but then depend on the proper
simulation of the beam accelerator time structure, which the Gate Scanning Pencil Beam class currently does
not provide. As noted in Huisman et al. (2016), no validation for background in PG simulations has been per-
formed at this time. In this study, we will therefore assume the stable time structure of current generation
cyclotrons, where the neutron background is largely constant. Estimates of background counts in the detector
are taken from Perali et al. (2014); Pinto et al. (2014), which are both based on measured data:

• MPS: Pinto et al. (2014) fig. 9: 1 ·103 ±1 ·102 per 4 ·109 primary protons per 8mm bin
Converted to per primary proton: 2.5 ·10−7 ±0.25 ·10−7

• KES: Perali et al. (2014) fig. 11: 5 ·10−7 ±0.5 ·10−7 per primary proton per 4mm bin

Per unit of bin length, the background yield of the MPS with ToF is therefore 4 times as low as the back-
ground seen with the KES.

2.3.2 Auger Actor

Both PG camera prototypes have different photo-multiplication tubes and different detector electronics. In
this study, these differences are not implemented. We instead use the same method as described in Gueth
et al. (2013) to obtain a hit from an impinging photon. Using the lifetime of a Geant4 particle, one can set the
ToF window around the time PG are expected to arrive. When the ToF window closes, if the integrated energy
deposited in a crystal lies in the acceptable energy window, the event is recorded. The position of the event
in the crystal is considered as the energy weighed barycenter of all interactions in the crystal, plus a random
value taken from a 5mm FWHM Gaussian to simulate the electronics and the detector resolution.

2.3.3 CT data, treatment plans

The Centre Léon Bérard in Lyon, France, is a cancer-specialized hospital equipped with X-ray imaging and
treatment facilities. We searched patient records for cases where a follow-up CT was made, in order to study
the effect of morphological change over the time period of a (normally fractionated) treatment. A follow-up
CT is made for cases where replanning is deemed necessary, based on externally observable morphological
changes: i.e. for patients where a larger than expected or usual change is easily visible from the outside. It
could be argued therefore that our selection of data leads us to study more severe cases of morphological
change, not typical. While cone-beam images are more widely available because their lower imparted dose
allows them to be recorded as part of regular clinical protocol, they are of sufficiently different quality from the
planning CT that a comparison would be dominated by the quality difference, not the morphological change.
Cone-beam assisted virtual CTs are a promising way of recreating CT quality images at later stages during
treatment, but we did not have access to such software. The planning and replanning CT (PCT and RPCT)
were co-registered on bony structures.

A CT and RPCT set was chosen for a patient with a head and neck tumor, wrapped around the trachea.
Since the Centre Léon Bérard is an X-ray facility, we made our own proton treatment plans based on the con-
tours provided by the clinicians. The hospital has a research machine with Elekta XiO proton treatment plan-
ning software, which can create treatment plans for a proton beam which is modeled in Gate (Grevillot et al.,
2012). Under supervision of clinical physicists, realistic plans were produced on the PCT and exported to a
format readable by Gate. A two field plan was created to prevent overdosing in AORs. In this paper, only the
main field, field 2 of our plan (fig. 6), will be studied. The CT with the dose due to field 2 and the PTV structure
are seen in fig. 7.

2.4 Data selection and analysis

2.4.1 Fall-off position estimation procedure

Publications sometimes mix up range estimation and FOP estimation. The first requires more than the esti-
mate of where the primary particle stops: the primary point of entry into the patient (a "fall-in" position or FIP)
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Figure 6: Structure of the 2-field treatment plan used in this study. The tumor was located in the head-and-
neck region, wrapped about the trachea. In the plan shown here the first field is clearly shifted towards lower
energies: this field was added to prevent field 2 from overdosing some AORs (most notably spine and optical
nerves).

Figure 7: A slice of the CT used in this study is shown with the dose due to field 2 of our plan overlaid, with in
red the PTV structure.

9
88



must also be measured, as was mentioned in Pinto et al. (2014) as the entrance position. Of course, range esti-
mation requires that both positions are within the field of view (FoV) of the detector, which not every proposed
PG camera is capable of. The KES camera has a more limited FoV, which is why we chose to only estimate the
fall-off. Note that the FIP may be estimated by other means: the optical patient positioning systems present
in most clinics could be used to get the FIP, although they do not provide a direct measurement. The range
estimate could be more interesting than FOP from a clinical perspective. Consider the simple case where a pa-
tient was set up a centimeter further along the beam-line: the fall-off will have shifted, but the range remains
unaltered. In the case studied in here, a large part of the patient’s morphological change was weight loss in the
subcutaneous layer. This implies a shift of the whole ion path, but not necessarily a change in range.
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Figure 8: Left: CT with the PG production image of the most distal iso-depth layer of the second field of our TP
in fig. 6. Right: the PG production profile (along the beam) of the same layer. A ragged plateau region due to
inhomogeneities is sometimes called the camelback.

The guiding design principle behind collimated PG cameras is then range or FOP estimation: a 1D PG
production profile is obtained, from which the FOP is extracted. Multiple approaches to extracting a FOP
from the line profile have been proposed (Gueth et al., 2013; Janssen et al., 2014; Roellinghoff et al., 2014;
Smeets et al., 2012; Sterpin et al., 2015). In figure 8 the peaks in the profile due to inhomogeneity are seen.
Such a ragged plateau region is sometimes called camelback. No conventional fit procedure accounts for
such situations. In preparatory work, we investigated a number of the proposed procedures, and all required
significant tweaks to be able to deal with our data. In addition, insofar the methods had free parameters,
we established significant sensitivity to such parameters on the final FOP estimates. In summary, the FOP
estimate depends greatly on the procedure, the robustness relies on having yields uncommon on the spot-
level in clinical TPs, and also on an absence of unavoidable inhomogeneities.

We will therefore not focus on the fitting procedure, but employ a simple method that visually works on
most data we have. Our procedure is as follows:

1. The measured PG profile is smoothed and interpolated with a smoothing spline function:

n∑

i=1
(Yi − f̂ (xi ))2 +λ

∫ xn

x1

f̂ ′′(x)2 d x (1)

where Yi is the measured PG profile and xi the associated x-coordinates, f̂ (xi ) the estimate smoothed
spline function and λ a smoothing parameter that determines the penalty for deviating from measure-
ment in exchange for smoothness (second order derivatives are close to zero on smooth functions). λ= 0
produces a perfect spline fit to the data, while λ À 1 produces a horizontal line. We found that λ = 2
struck the right balance between overfitting to noise and removing too many features, which tends to
happen for low statistic measurements.

2. The obtained function is plotted for 1024 x j . Any f (x j ) < 0 are set to 0.
3. The global maximum is found.
4. The baseline is set equal to the lowest 25% of bins.
5. From the distal end backwards, the first maximum is taken as the distal most peak position, if it is above

the threshold of 30% of the difference between baseline and global maximum. If no such point is found,
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the global maximum is taken as the distal most maximum.
6. The fall-off amplitude (FOA) is set to the difference between the distal maximum and baseline: FO A =

max −basel i ne. The FOP is obtained by traversing the smoothed profile from the distal end towards
the peak until y j > 1

2 FO A.

The results of this procedure are illustrated in figure 9. Every PG profile was estimated 50 times, and so we
obtained 50 estimates for the FOP. We assume that the FOPs follow a Gaussian distribution, so the mean of the
50 realizations gives us the best FOP estimate and the sigma gives the precision of the ability to estimate the
best FOP. Comparing the 50 FOP estimates obtained from the CT with the 50 estimates obtained from the RPCT
simulations, gives 2500 possible shift estimates. Again, the distribution of shifts should be centered at the true
shift, while the sigma tells us how likely it is that this true shift is detected under the current conditions.
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Figure 9: The top row demonstrates the fall-off determination procedure on the multi-parallel camera data;
on the bottom row on knife-edge slit camera data. The left column is produced with a PG signal due to 109

primaries, while the right column was produced with 107 primary protons. In black crosses the measured PG
counts are plotted. The smoothed data is shown in red. The green horizontal lines are drawn at the obtained
distal maxima and baselines, while the vertical green lines shown the position of the distal maximum and the
position of the fall-off. For the bottom-right plot, a history is visible where the procedure fails: the background
induces an erroneous peak detection.

2.4.2 Spot selection

To understand the feasibility of spot FOP verification in clinical setting, it must be established how the quality
of the shift estimate depends on the number of primaries per spot. We used two things in this search: the
FOP estimation procedure detailed in the previous section, executed on the dose image, and a quality-of-fit
estimation. The quality of fit estimation consists of testing if the FOPs at 50% is within a certain distance dx
of the FOP evaluated at 20% of FOA and 80% of FOA. dx was set to 8 mm. An observation is that about 10%
of spots do not pass the uniform FOP criterion: figure 10 shows two examples of the more typical case where
inhomogeneities show their impact. For the spot-grouping procedure, 123 out of 1067 spots not meeting this
criterion were discarded.
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Figure 10: Axial slices of dose difference images for spots 60 and 361 demonstrate the effect of patient inho-
mogeneity on the range. The color scale was set to make the under- and overshoot regions clearly visible. We
used a threshold to select "single range" FOPs by requiring that 20% of FOA and 80% of FOA are spaced out no
more than 8 mm of 50% FOA. The proton beam is entering from the left.

Axial slice of the absolute dose difference for
spot 61 of our TP, color scale chosen for best vis-
ibility. A relatively uniform forward shift may be
observed.

Dose difference profile at the central line (shown
in red on the left) of spot 61.

Figure 11: On the left the dose difference between CT and RPCT as seen from the top generated by irradiating
spot 61. On the right the line profile corresponding to the red line (left).
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We ended up choosing three spots (table 1). Spot 61, with a large shift of over a centimeter is shown in
figure 11. Slightly visible on the right is a whiff of overshoot: the beam partially exits the patient causing the
distal elevation seen in figure 12. An expected shift of over a centimeter should be reliably detectable for any
PG camera. Spots 29 and 40 are more challenging; with expected shifts between 2 and 4 mm they represent a
minimum shift that we hope PG cameras can detect.
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Figure 12: The three chosen spots, based on their shifts and quality of shift. Dose is normalized by mass, which
explains the lack of structure. Top row: dose profiles, bottom row: PG profiles as used in the simulation. The
yield is the integral yield of the whole image, so 6% means 6 out of 100 protons would generate a PG.

2.4.3 Spot grouping

As established in section 2.1.1, we expect a difference between the number of protons per spot as planned and
sufficient for reconstruction. Depending on the beam line, the minimum unit of PG detection may be a spot
(beam scanning) or an iso-energy layer (passive scattering). Since most new centers are of the beam scan-
ning type, we propose an alternative spot grouping method. Our assumption is that due to inhomogeneities,
protons within an iso-energy layer may have very different FOPs in the patient. We will compare grouping by
iso-energy layer to grouping based on expected spot FOP. On the planning CT the 3D dose distribution is com-
puted per spot, and then a dose FOP is determined with the same algorithm as for PG FOP, see section 2.4.1.
We made the choice to use the dose FOP and not PG FOP because that is what is available as an output in TPS:
dosemaps. In future TPSes, it may be imagined the (per spot) FOP could be output directly for applications
such as PG monitoring.

The FOPs for each spot are binned along the beam line, and these bins we call iso-depth layers (red line in
fig. 13). In terms of proton numbers (green line), this yields similar impressions as the layer views in figure 4:
the distal layer(s) have higher spot statistics but lower cumulative (layer) statistics.
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Spot 29 Spot 40 Spot 61

Dose shift [mm] 2.77 4.08 12.4

PG emission shift [mm] 2.32 3.34 13.9

PG + PSF shift [mm] 2.61 2.91 11.9

Iso-energy layer [MeV] 145.86 143.02 143.02

x-pos [mm] -24.0 -24.0 -24.0

y-pos [mm] 16.0 40.0 -40.0

Nr. protons 2.75 ·107 2.72 ·107 4.73 ·107

Table 1: Summary of the properties of the selected spots.
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Figure 13: For the main field in the TP, per spot, a FOP is computed and binned (red, left y-axis). The depth
dose distribution is overlaid in blue in linear arbitrary scale, as a reference for the shape. In green each spot is
weighted with its number of protons (right y-axis) and then summed. With respect to the red line, the green
line flattens out the top in the forward direction, supporting the thesis that in the geometric domain as well as
the energy domain, the distal spots are individually weightier. However the cumulation of all spots leads to a
larger dose in the medial layers of the target volume.
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2.4.4 Figures of Merit

When evaluating the detector, principally we care about accuracy and precision: does the PG camera estimate
the FOP consistently correct and does it so reliably over the course of a number of experiments? A more clinical
point of view could be: does the detector correctly signal significant changes? A precise FOP estimate or FOP
shift estimate is perhaps not required, but a correct indication of significant change is.

Employing the batch method we realize between 20 and 50 simulations for each experiment, each resulting
in a FOP estimate, giving us a mean µFOP and a standard deviation σFOP for a certain experiment. Since we
are studying the effect of replacing the CT with a RPCT to simulate patient change, we run each experiment
with both CT and RPCT. Each FOP estimate of the N CT realizations is compared to each FOP estimate of the
N RPCT realizations, resulting in N×N possible FOP shift measurements. These distributions have a µ∆ and a
σ∆. The shift initially obtained with the dose is denoted ∆dose

Grading the performance of the detectors will be done according to a few figures of merit:

• Accuracy: |µ∆−∆dose|.
• Precision: σ∆. For this estimate of the standard deviation of the Gaussian distribution a standard de-

viation can be computed once again based on the number of realization n used to obtain it: σ(σ∆) =
σ∆p

2×(n−1)
, as per Leo (1994, formula 4.54).

• Confidence: the percentage of RPCT FOP realizations that fall outside µFOP,CT ± 2σFOP,CT indicates the
likelihood any difference from the expected FOP is measured. In other words, given that in this analysis
we know that a shift should be detected, what is the probability we will? It will be denoted as P∆.

2.5 Verification of Knife-Edge results
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Figure 14: Knife edge FOP estimates for a simple simulation of a beam in a waterbox. In red, the beam was set
at 139 MeV and 144 MeV is shown in blue. 50 realizations for each setting are overlaid, with their FOP plotted
as a vertical line.

In Priegnitz et al. (2015) PG shifts due to beam energy shifts are studied. They include a study in the de-
tectability of the fall-off as function of the number of primaries. To test our implementation of the knife-edge
camera, we recreated the simulation: we shoot a mono-energetic beam into a waterbox at two energies with
a 5 MeV shift. We created 50 realizations with a 139 MeV beam energy, and 50 realizations with 144 MeV. In
figure 14 the profiles are plotted.
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The results in figure 15 are very similar to those in Priegnitz et al. (2015, figure 9): at 109 primaries, the
distributions are well separated with a shift of 8.3 mm (different from Priegnitz et al. (2015) because of the
different material). In figure 13 in Perali et al. (2014) with 109 primaries a standard deviation of 1.5 mm is
obtained, while we have 1.21 and 1.14 mm. We consider this sufficient agreement to be confident of our setup
and further results. Roellinghoff et al. (2014) recalls that σFOP is proportional to the contrast-to-noise ratio

(CNR)
p

background
signal , which is proportional to 1p

Nprim
. That means the increase inσ in figure 15 should be roughly

a factor 3 as the order of magnitude in number of primaries decreases. Between 108 and 109 this holds, but
between 107 and 108 it does not, likely because of the noisiness of the profiles generated with 107 primaries,
on which the FOP estimation procedure is prone to misidentify the peak position.

Falloff Position [mm]

−10 −5
0

5
10

15
20

25 Prim
aries

[nr]

109

108

107

[c
ou

n
ts

]

0

2

4

6

8

10

12

14

16

18

109CT: µFOP = 4.18, σFOP = 1.03±0.10
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Figure 15: Knife edge FOP estimates for a simple simulation of a beam in a waterbox. In blue, the beam was
set at 139 MeV and 144 MeV is shown in red. The CNR test holds between 108 and 109 holds, but between 107

and 108 it does not.

Note that the Knife-Edge prototype is very sensitive to accurate positioning with respect to the expected
FOP. This was elaborated upon in Sterpin et al. (2015, Section IV.A.3): the detector response is, due to the KES
collimator, not linear as with a parallel slit collimator. The response further away from the position directly in
front of the KES slit is slightly lower due to the increased photon path length through the patient and the atten-
uation incurred by that longer path. Additionally, the solid angle per detector pixel depends on the position
with respect to the KES slit. Initially we aligned the camera at the isocenter, which may be tens of centimeters
away from the KES slit. We confirm the observation that this results in incorrect FOP estimates, for our spot
61 of up to half a centimeter. For clinical cases, alignment with the FOP from the TPS dose profile may be a
workable alternative. In this study, to make the comparison as fair as possible and avoid any bias, alignment
on the FOP specific for each spot was done as follows: the intermediate PG source image of vpgTLE (equiva-
lent to the PG emission) was projected on the beam axis, and then convolved with a Gaussian of σ= 8.5 mm,
which corresponds to the point spread function (PSF) with a FWHM of 20 mm used in Priegnitz et al. (2015) to
approximate the detected profiles from the emitted profile.

2.6 Verification of Multi-Parallel Slit results

As a verification our implementation of the MPS camera, we checked that we obtain a similar precision on the
FOP by repeating the procedure performed for the KES (fig. 16). In the caption of figure 9 in Pinto et al. (2014)
we read that with 108 primaries a standard deviation of 1.3 mm for the detector design used here is obtained,
which is about 20% different from our 1.63 and 1.54 mm in figure 17.

A last number perhaps of interest is the detection yield: we saw an average of 2.5 · 10−5 detections per
emitted PG for the MPS camera, and around 1.5·10−5 for the KES. In combination with the number of detector
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Figure 16: Multi parallel slit FOP estimates for a simple simulation of a beam in a waterbox. In red, the beam
was set at 139 MeV and 144 MeV is shown in blue. 50 realizations for each setting are overlaid, with their FOP
plotted as vertical lines.
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Figure 17: Multi parallel slit FOP estimates for the same setup used to verify the Knife Edge results: a beam
in a waterbox. In blue, the beam was set at 139 MeV and 144 MeV is shown in red. The CNR test holds when
comparing σs for 108 and 109 primaries, but again the profiles for 107 were too noisy to produce reliable FOP
estimates.
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bins (MPS: 37, KES: 20), these numbers help understand why 106 primaries can be dismissed right off the bat:
a reasonable profile can never be estimated with a handful of counts. Therefore we omitted the 106 data from
the analysis. The CNR test holds when comparing σs for 108 and 109 primaries, but again the profiles for 107

were too noisy to produce reliable FOP estimates.

3 Results

The first study is on the performance of the two collimated PG camera designs on a patient case with a CT and
follow-up CT. Secondly, we investigate how two PG cameras perform as function of the number of primaries
for a given spot. To conclude, we propose a new spot-summing method, we discuss why it’s an improvement
over iso-energy layer summing, and demonstrate its effect.

3.1 Weight-modulated single spot

Figure 18 shows all profiles, for all number of primaries, for both cameras, for spots 29, 40 and 61. The yields
in the graphs correspond to the number of recorded hits anywhere in the spectrum, per launched primary
proton, per realization (averaged). Based on the yields in these three spots, the first two (29 and 40) are very
similar while spot 61 is a bit different. For both cameras the PG signal is lower (in particular the FO amplitude)
in spot 61 than for the other two spots. Looking at the profiles, for best visibility the 109 realizations, we see the
background-level is slightly lower and the signal to background ratio is worse for spot 61 with respect to the
other spots. Note that the background is not the same as the background-level: with the MPS about 30 to 40%
of the background-level is contributed by scattered PGs, while with the KES this is about 10%. With the MPS
the SNR is about 13% lower when comparing spot 61 to 40, while with the KES the SNR is reduced by about
7%.

Figure 19 shows the FOPs obtained from the profiles in figure 18, binned per CT (blue) and RPCT (red).
We see the distributions get narrower and exhibit less overlap as statistics improve. We see that taking the PG
emission and convolute with a Gaussian is a good assumption: the µFOP is always within a millimeter of the
FOP on the "PG emission + PSF". If we stick to the results obtained with 109 primaries, we see with spots 29
and 40 a stable σFOP ≈ 0.5 - 0.6 mm is obtained for the MPS camera and 1.3 - 1.6 mm for the KES. Switching
to spot 61, the lower yields obtained for spot 61 translate to a lower precision. Using that the contrast to noise
ratio is proportional to σFOP, the expected difference in the loss of precision is consistent with about 30% and
17% for the MPS and KES respectively, between spots 40 and 61. Taking the mean of the σFOP,CT and σFOP,RPCT

of the 109 results in, the MPS σFOP indeed show a round 30% increase and for the KES 23%. We can conclude
that not all spots are created equal, and that the σFOP seems to depend on location in the target (attenuation)
and heterogeneity of the tissue in which it is delivered.

The FOPs obtained using the 50 realizations with the CT and the 50 with the RPCT can be compared with
each other, thereby obtaining a distribution of 2500 possible shift estimates. The mean of the distribution of
FOP differences should be centered at the true mean proton FOP difference.Figure ?? shows these FOP shift
distributions per spot, per camera, per number of primaries.

Table 2 summarizes the results relevant to the ultimate estimated shifts. With 109 primaries, both cameras
are within 2 mm of the "PG + PSF" emission shift, except the KES camera in spot 61. Here, when its σ∆ is
considered, it is within one σ of the expected value. At the prescribed spot weights, the MPS still converges on
the correct µ∆, but the KES no longer. Considering that the σ∆ for the KES is on the order of half the field of
view of the camera, it seems fair to draw the conclusion no correct FOPs are estimated at these spot weights.

Turning to P∆ at 109 primaries, we observe that the MPS performs very well: for any spot the probability
that a single RPCT realization indicates a change from the CT is at least 99%. The KES reaches the same prob-
ability only for the large shift of spot 61. At their planned spot weights, neither camera provides great results
except for the MPS for spot 61: even though the precision is 4.73 mm, the size of the true shift is enough to
keep the CT and RPCT FOP distributions separated enough to be 96% certain a single measurement would
have provided a clue that there was a significant shift.

3.2 Spot grouping

Since spot-by-spot FOP shift measurements appear to be off the table, we can consider collecting data during
the delivery of multiple spots. Based on the spot modulation analysis, the minimum proton count required

18
97



−150 −100 −50 0 50 100 150

Depth [mm]

0
200
400
600
800

1000
1200
1400
1600
1800

P
G

d
et

ec
te

d
[c

ou
n
ts

]

CT yield: 2.46× 10−5

RPCT yield: 2.45× 10−5

PG detection for 109 primaries

−150 −100 −50 0 50 100 150

Depth [mm]

0

50

100

150

200

250

P
G

d
et

ec
te

d
[c

ou
n
ts

]

CT yield: 2.46× 10−5

RPCT yield: 2.45× 10−5

PG detection for 108 primaries

−150 −100 −50 0 50 100 150

Depth [mm]

0

10

20

30

40

50

60

P
G

d
et

ec
te

d
[c

ou
n
ts

]

CT yield: 2.47× 10−5

RPCT yield: 2.44× 10−5

PG detection for 2.75× 107 primaries

−150 −100 −50 0 50 100 150

Depth [mm]

0

5

10

15

20

25
P

G
d

et
ec

te
d

[c
ou

n
ts

]
CT yield: 2.46× 10−5

RPCT yield: 2.41× 10−5

PG detection for 107 primaries

MPS, spot 29

−60 −40 −20 0 20 40 60

Depth [mm]

0

200

400

600

800

1000

P
G

d
et

ec
te

d
[c

ou
n
ts

]

CT yield: 1.47× 10−5

RPCT yield: 1.47× 10−5

PG detection for 109 primaries

−60 −40 −20 0 20 40 60

Depth [mm]

0

20

40

60

80

100

120

P
G

d
et

ec
te

d
[c

ou
n
ts

]

CT yield: 1.47× 10−5

RPCT yield: 1.47× 10−5

PG detection for 108 primaries

−60 −40 −20 0 20 40 60

Depth [mm]

0

10

20

30

40

50

P
G

d
et

ec
te

d
[c

ou
n
ts

]

CT yield: 1.47× 10−5

RPCT yield: 1.47× 10−5

PG detection for 2.75× 107 primaries

−60 −40 −20 0 20 40 60

Depth [mm]

0

5

10

15

20

P
G

d
et

ec
te

d
[c

ou
n
ts

]

CT yield: 1.48× 10−5

RPCT yield: 1.47× 10−5

PG detection for 107 primaries

KES, spot 29

−150 −100 −50 0 50 100 150

Depth [mm]

0
200
400
600
800

1000
1200
1400
1600
1800

P
G

d
et

ec
te

d
[c

ou
n
ts

]

CT yield: 2.67× 10−5

RPCT yield: 2.65× 10−5

PG detection for 109 primaries

−150 −100 −50 0 50 100 150

Depth [mm]

0

50

100

150

200

P
G

d
et

ec
te

d
[c

ou
n
ts

]

CT yield: 2.67× 10−5

RPCT yield: 2.66× 10−5

PG detection for 108 primaries

−150 −100 −50 0 50 100 150

Depth [mm]

0

10

20

30

40

50

60

70

P
G

d
et

ec
te

d
[c

ou
n
ts

]

CT yield: 2.68× 10−5

RPCT yield: 2.65× 10−5

PG detection for 2.72× 107 primaries

−150 −100 −50 0 50 100 150

Depth [mm]

0

5

10

15

20

25

30

P
G

d
et

ec
te

d
[c

ou
n
ts

]

CT yield: 2.66× 10−5

RPCT yield: 2.60× 10−5

PG detection for 107 primaries

MPS, spot 40

−60 −40 −20 0 20 40 60

Depth [mm]

0

200

400

600

800

1000

P
G

d
et

ec
te

d
[c

ou
n
ts

]

CT yield: 1.58× 10−5

RPCT yield: 1.59× 10−5

PG detection for 109 primaries

−60 −40 −20 0 20 40 60

Depth [mm]

0

20

40

60

80

100

120

140

P
G

d
et

ec
te

d
[c

ou
n
ts

]

CT yield: 1.58× 10−5

RPCT yield: 1.59× 10−5

PG detection for 108 primaries

−60 −40 −20 0 20 40 60

Depth [mm]

0
5

10
15
20
25
30
35
40
45

P
G

d
et

ec
te

d
[c

ou
n
ts

]

CT yield: 1.59× 10−5

RPCT yield: 1.58× 10−5

PG detection for 2.72× 107 primaries

−60 −40 −20 0 20 40 60

Depth [mm]

0

5

10

15

20

P
G

d
et

ec
te

d
[c

ou
n
ts

]

CT yield: 1.59× 10−5

RPCT yield: 1.57× 10−5

PG detection for 107 primaries

KES, spot 40

−200−150−100−50 0 50 100 150

Depth [mm]

0

200

400

600

800

1000

1200

P
G

d
et

ec
te

d
[c

ou
n
ts

]

CT yield: 2.01× 10−5

RPCT yield: 2.00× 10−5

PG detection for 109 primaries

−200−150−100−50 0 50 100 150

Depth [mm]

0
20
40
60
80

100
120
140
160

P
G

d
et

ec
te

d
[c

ou
n
ts

]

CT yield: 2.01× 10−5

RPCT yield: 1.99× 10−5

PG detection for 108 primaries

−200−150−100−50 0 50 100 150

Depth [mm]

0
10
20
30
40
50
60
70
80

P
G

d
et

ec
te

d
[c

ou
n
ts

]

CT yield: 2.01× 10−5

RPCT yield: 2.01× 10−5

PG detection for 4.73× 107 primaries

−200−150−100−50 0 50 100 150

Depth [mm]

0

5

10

15

20

25

P
G

d
et

ec
te

d
[c

ou
n
ts

]

CT yield: 1.99× 10−5

RPCT yield: 1.99× 10−5

PG detection for 107 primaries

MPS, spot 61

−60 −40 −20 0 20 40 60

Depth [mm]

0
100
200
300
400
500
600
700
800
900

P
G

d
et

ec
te

d
[c

ou
n
ts

]

CT yield: 1.31× 10−5

RPCT yield: 1.34× 10−5

PG detection for 109 primaries

−60 −40 −20 0 20 40 60

Depth [mm]

0

20

40

60

80

100

P
G

d
et

ec
te

d
[c

ou
n
ts

]

CT yield: 1.31× 10−5

RPCT yield: 1.33× 10−5

PG detection for 108 primaries

−60 −40 −20 0 20 40 60

Depth [mm]

0

10

20

30

40

50

60

70

P
G

d
et

ec
te

d
[c

ou
n
ts

]

CT yield: 1.31× 10−5

RPCT yield: 1.34× 10−5

PG detection for 4.73× 107 primaries

−60 −40 −20 0 20 40 60

Depth [mm]

0
2
4
6
8

10
12
14
16
18

P
G

d
et

ec
te

d
[c

ou
n
ts

]

CT yield: 1.30× 10−5

RPCT yield: 1.35× 10−5

PG detection for 107 primaries

KES, spot 61

Figure 18: The profiles plotted for spot 29, 40, and 61 (row-wise) and for the MPS and KES cameras (column-
wise). Per subplot, four graphs are shown, based on 109, 108, 107, and the original spot weight (clockwise,
starting top-right). In blue the results with the CT image, red the RPCT image. The yields in the graphs corre-
spond to the number of recorded hits anywhere in the spectrum, per launched primary proton, per realization
(averaged).
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Figure 19: The FOP distributions are plotted for the spots (row-wise) and for the MPS and KES cameras
(column-wise). Per subplot, four times two FOP distributions are shown. In blue the CT FOPs, in red the
RPCT FOPs. In front the FOPs based on 109, 108, the original spot weight, and 107 as we go towards to back of
the 3D plot.
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Spot 29 shift [mm] Spot 40 shift [mm] Spot 61 shift [mm]

Dose 2.77 4.08 12.4

PG emission 2.32 3.34 13.9

PG + PSF 2.61 2.91 11.9

µ∆ MPS @ 109 2.68±0.77 3.23±0.77 12.6±1.15

µ∆ KES @ 109 2.56±1.93 3.27±2.24 9.79±2.25

µ∆ MPS @ spot weight 2.51±4.05 3.76±4.36 12.5±4.73

µ∆ KES @ spot weight -1.2±28.9 -0.2±28.9 4.30±26.2

Spot 29 P∆ Spot 40 P∆ Spot 61 P∆

P∆ MPS @ 109 99% 99% 100%

P∆ KES @ 109 43% 59% 99%

P∆ MPS @ spot weight 20% 24% 96%

P∆ KES @ spot weight 1.9% 1.6% 1.4%

Spot 29 spot weight Spot 40 spot weight Spot 61 spot weight

Nr. protons 2.75 ·107 2.72 ·107 4.73 ·107

Table 2: Results from figure ?? summarized and compared to the ground truths from figure 12: the accuracy
can be gleaned by comparing the shifts, the probability of measuring the change is estimated with P∆. With
"PG + PSF" the FOP on the PG emission profile convolved with a Gaussian with a 20 mm FWHM is indicated.
The geometric effect of the detector not measuring the PGs at emissions but at detection, approximated by the
convolution, leads to up or downstream shifted FOPs.

should be no less than 109 primaries. We take spot 61 as a start, which is conveniently part of the first iso-
energy layer (counted down from highest energy) having at least 109 protons. The geometric group is con-
structed by grouping spots with FOPs closest to spot 61’s FOP until 109 ± 5% protons is reached. The final
count is 1.07 ·109 and 0.98 ·109 protons in the iso-energy and iso-depth layers respectively.

Observing figure 20, we see the fall off region is narrower, steeper and more regular with iso-depth group-
ing. Because of the sparse number of spots around spot 61, the grouped spots have dose FOPs of up to 9
mm different from spot 61. Altogether the iso-energy and iso-depth grouping share 30% the same spots. The
camelback in the iso-depth profiles may be explained by this spread in FOPs. The iso-energy RPCT shows
a clear partial forward shift with a shoulder right around the middle of the fall-off, which may translate to
spread in the obtained FOPs. The fall-off slopes in the iso-depth profiles are different, which is reflected in
second row of the figure: a larger σ∆ for the RPCT is obtained. If we consider that spot 61 and spot 40 are both
part of the energy layer, with very different FOPs, but the σFOP is preserved. Averaged over spots 40 and 61,
CT and RPCT, σFOP is 0.56 and 1.58 mm for the MPS and KES respectively, while averaged over iso-depth and
iso-energy grouping and CT and RPCT, σFOP is 0.78 and 2.4 mm resp. For the KES, σFOP is consistently better
with iso-depth grouping however (averaged over CT and RPCT: 2.02 and 2.69 mm for iso-depth and iso-energy
resp.).

If we make the iso-depth and iso-energy groups based on spots 29 and 40, the plots in figure 21 are ob-
tained. Now, the number of primaries per grouping are nearly identical between the groupings (0.84 ·109 for
the spot 20 groupings and 1.07 ·109 for the spot 40 groupings). The lower number of primaries is reflected in
the P∆ for both cameras: both are no longer at a steady 99% as with the spot 61 groupings, but less. The small
shift of spot 29 translates to small shifts in the groupings, especially the iso-depth grouping. Here, the FOP shift
is well within the precision of the KES camera, and so it clearly loses its power to discriminate the CT signal
for the RPCT (P∆ = 14%). The MPS shows, apart from the iso-energy group about spot 29, a slight improved
on the µ∆ when compared to the spot set to 109 protons. For each camera and spot, the precision on the FOP
difference (µ∆) improves with iso-depth over iso-energy grouping.

Observing table 3, the better FOP precision of the KES for iso-depth grouping is translated to a higher
probability to measure a significant change: µ∆ improved from 38% to 75%. Looking at the groupings for spot
40, we see that the PG + PSF convolution produces a very similar FOP difference, while the FOP at PG emission
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Figure 20: On top the PG emission profile (along the beam) is shown: left the iso-energy and right the iso-depth
spot groupings, again in blue the CT and red the RPCT. On the second row, we see the FOP distributions with
on the left the MPS and the right the KES results. The bottom row shows the FOP shift distributions.
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Figure 21: In top left the PG emission profiles are plotted for groups about spot 29, with iso-energy and iso-
depth groups far left and center left respectively. On the right, the same plots for the groupings about spot
40. Blue lines show the CT PG emission, red the RPCT PG emission. The middle row shows the FOP shift
distributions for the two grouping methods for the iso-energy and iso-depth (both with 0.84×109 primaries)
groups about spot 29. The bottom row shows the results for the spot grouping about spot 40, with 1.07×109

primaries for both groupings. For either row the left results were obtained with the MPS camera and those on
the right with the KES camera.
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Spot 29 Spot 40 Spot 61

iso-energy iso-depth iso-energy iso-depth iso-energy iso-depth

Dose 2.47 1.60 6.40 4.07 6.40 6.40

PG emission 4.94 2.32 7.12 3.78 7.12 7.12

PG + PSF 3.20 2.18 4.94 4.51 4.94 6.25

µ∆ MPS 3.13±1.16 2.18±0.89 4.82±1.00 3.67±0.96 4.72±1.17 5.77±1.05

µ∆ KES 4.20±3.61 1.80±2.55 4.90±3.38 3.75±2.71 4.15±3.82 5.15±2.87

P∆ MPS 96% 92% 99% 99% 99% 99%

P∆ KES 34% 14% 54% 57% 99% 99%

Nr. protons 0.84 ·109 0.84 ·109 1.07 ·109 1.07 ·109 1.07 ·109 0.98 ·109

Table 3: Overview of the iso-energy versus iso-depth comparison: the accuracy can be gleaned by comparing
the shifts, the probability of measuring the change is estimated with P∆. All shifts are given in units of mil-
limeters. The fact that the PG emission and dose shifts for spot 61 are exactly the same with iso-energy and
iso-depth grouping is purely fortuitous.

and dose are quite different.

4 Discussion

Even though cameras with different collimators were used in this study, the goal was not to compare designs
per se, but to see the differences in performance in two particular cameras both optimized for FOP precision.

4.1 Spot 61

The lower detection yield for spot 61 may seem puzzling at first, but may be explained with gamma attenuation
in the patient. Spot 40 and 61 share a coordinate in the plane transverse to the beam, but differ because they
are almost at opposite ends of the other dimension in the transverse plane, which puts spot 61 about 5 cm
deeper in the patient seen from the cameras point of view. Lin et al. (2016, Table 3) presented some results
with respect to attenuation: a 10 cm increase of path lenth in a PMMA target leads to a 24% detection yield
reduction with the MPS camera of that paper, and 39% with their KES.

4.2 Simulation limitations

This study was performed in silico. We used Geant4’s QGSP_BIC_HP_EMY physicslist to produce our results.
For Geant4 is it known that currently PG production is overestimated; about 30% according to Pinto et al.
(2016). This means that the results presented here may be better than in reality. Secondly, we have used the
vpgTLE method, which only simulates PGs due to the primary protons; no background estimation is provided,
which has not been subjected to calibration with empirical results in any case. The room and nozzle were not
modeled. Nevertheless, background estimates were taken from the original papers, and they were both based
on experimental measurement.

4.3 Multiple fields and FOP

Range verification is useful for under- and overshoot detection. It does not provide checks for transverse error.
If there is an organ at risk (OAR) right behind the (geometrically) distal layer, FOP verification would provide
valuable information. The interplay between multiple fields is difficult to disentangle, because an overshoot
in one field may be compensated by an undershoot in another field, but that was considered out of scope for
this publication. For single field treatment plans, or perpendicular beams where under- and overshoot or not
likely to compensate, FOP verification is easily understood.

We can expect different shifts due to the profile’s various shapes, changing from spot to spot, and profile
differences depending on the particular grouping. Adding the PSF blurs these features and – apparently – can
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alter the shift estimate. Range mixing is inherent to spot grouping, and therefore to altering the profile shape,
so it is something to be aware of.

4.4 From FOP to Range to Profile measurement

The FOP estimation algorithm presented here was not the primary focus of the study. Possibilities for improve-
ment are likely. As far as these authors could establish, our method was broadly similar to procedures in other
publications: a maximum and a floor are extracted from the (smoothed) profile, the difference of which is the
FO. Then, the FOP is set to the position where the profile crosses the half-FOA threshold. This means such
procedure is sensitive to the floor and maximum estimation. With low statistics, the peak may be misidenti-
fied at a noisy bin. For the KES, incorrect alignment to the expected FOP may lead to the background falling
outside of the field of view and may lead to a misidentified floor. In our plan, the width of the KES FO was
about 4 cm. The angular resolution of collimated cameras implies some blurring and therefore broadening of
the FO width. With a FoV of 10 cm and a possible forward shift of perhaps more than a cm (spot 61) it is not
uncommon that little if any post BP floor is in the FoV. Taking care to center the camera at the expected FOP
(by taking the FOP of the PG emission convolved with a PSF) proved essential for the KES results. The MPS has
a clear advantage here.

As mentioned in section 2.4.1, it is important to distinguish range from FOP estimation. True range esti-
mation, determining a FIP as well as a FOP, might improve the quality of the results, because it would allow
the clinician to distinguish morphological change from setup shifts. Both would still suffer from the sensitivity
to peak and floor estimation. In Roellinghoff et al. (2014) fitting to a reference profile was proposed. Gueth
et al. (2013) provided a correlation at registration method where shifted profiles could be distinguished from
changed profiles (or bad data). Since in clinical conditions, each spot would require its own reference, the chal-
lenge becomes sourcing the references. Schumann et al. (2016) demonstrated that a per-spot PG profile may
be obtained by convoluting the per-spot dose profiles. A TPS might then provide such profiles as a matter of
course, which would profile the per-spot reference needed. Such profile-matching might make features such
as camelbacks and no-single-range spots as in fig. 10 a feature instead of a problem: advanced profile match-
ing might use the shape to infer structural information. A peak due to bone might function as a reference
point, even if FIP and FOP change due to weight loss.

4.5 Improved Spot-grouping

Initially we aimed to include a transverse threshold in our grouping procedure: it stands to reason that patient
changes are not uniform in the plane transverse to the beam. However, the minimum statistics discovered
in the modulated spot analysis proved implacable: this treatment plan prescribes a total of 2.76 ·1010 protons,
which divided by the minimum 109 protons needed for a reliable (but still not sub-mm accurate) measurement
with the MPS camera, leaves us with about 27 possible groups, if spots are grouped only once. At the proxi-
mal and distal ends the FOPs are too spread out to preserve FOP sharpness, and in any case this leaves very
little room to include both FOP and transverse proximity in the grouping algorithm. Grouping on transverse
position only, e.g. integrating the signal over all spots at one transverse position, is not expected to provide an
improved FOP estimate, since the highest energy would determine the (distal) FOP, while all the other spots
will do no more than elevate the plateau region.

We have no doubt that a more sophisticated grouping method may strike a better balance between prox-
imity, both transverse and longitudinal, and proton count than what we were able to envisage. A fundamental
inverse relationship between proton count and spot-pertinence remains: the spots at the fields edges, distal
and transverse, are most pertinent to FOP detection, while simultaneously very spread out and therefore dif-
ficult to group due to range mixing. Moreover, the difficulty of low spot weights may be expected to increase
with a trend towards smaller spots in non-isocentric planning (Grevillot et al., 2015).

A possible alternative avenue involves identifying regions of expected deviation. In the contouring stage,
areas could be grouped on likelihood of deformation, for instance lung or windpipe. A pre-grouping might
then provide a set of spots that should correlate to under- or overshoot in the particular region. Perhaps even
the TPS could be made aware, and place weightier, but fewer, spots at the distal end of the sensitive area, so
that PG FOP measurement is aided.
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4.6 Improved collimated cameras

The detection yields are low with respect to the proton statistics. Since we can not launch more protons, we
must improve the detection yield. The most straightforward method for improving the yield is increasing the
solid angle. When the KES prototype considered here was first presented, a full ring like in PET detection was
envisaged (Smeets et al., 2012, figure 2). While this does not remove the sensitivity to alignment, it seems fair
to say that at minimum an order of magnitude better yield can be expected. With the MPS camera, due to its
detection efficiency, a factor two or three seems to be the upper limit of the expected yield gains. In terms of
absorbers the cameras perform rather similar, so it is unclear if there is room for improvement there.

4.6.1 Other PG camera designs

Compton camera designs are an alternative way to measure the PG profile and is seeing a lot of interest (Hueso-
González et al., 2016; Krimmer, 2015; Nurdan et al., 2015), although at this time they are not yet competitive
with the conceptually simpler collimated cameras. Apart from position, time of arrival (ToF) and energy pro-
vide information about the beam-patient interaction. PG timing (Golnik et al., 2014) cameras measure FOP
by converting the ToF to a distance. Such a design lends itself well for a head-to-head comparison to colli-
mated cameras. PG spectroscopy is being developed at Massachusetts General Hospital (Verburg and Seco,
2014), where the FOP is not considered but the target tissue is deduced from the spectrum. A different tissue
indicates change. It is expected to be tested under clinical conditions soon (Verburg and Bortfeld, 2016).

5 Conclusion

We have presented the first start-to-end clinical simulations of a multi-parallel slit camera for Prompt Gamma
detection. In addition, we have presented the first head-to-head comparison of two collimated PG cameras
under realistic conditions. Also, we present a new spot grouping method based on the notion of iso-depth.
A small study of clinical spot weights was performed. Finally, a figure of merit is presented that provides an
estimate of the probability of a measured FOP falling within or outside of the expected mean ±2× standard
deviation.

At the nominal spot weights, neither camera can be expected to measure a correct result. Typical spot
weights are studied, and with a downward trend of spot weights for low tolerance plans, it seems unlikely
the two PG cameras considered will be able to produce clinically relevant results on the spot level, without
significant improvements. Spot grouping is a way to improve the statistics and enable millimetric precision
of the FOP estimate. Two spot grouping methods are studied, and only for the KES camera did the precision
on the FOP shift improve by using the new iso-depth grouping, which deserves further investigation. A better
than two out of three likelyhood to obtain a meaningful indication of the shift (P∆) is likely for both cameras,
when using iso-depth spot grouping instead of grouping by iso-energy layer.
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5.8 Notes on the article

5.8.1 Comparison to other comparative studies

An earlier comparison between two collimated PG camera designs was presented in Lin et al. (2016).
That paper was a geometrical study into the difference of the two methods of collimation without op-
timisation, which may be different for the two types. As such, not actual (optimized) prototypes were
compared; only the collimators were swapped. In addition, the target was a "perfect line beam" in a
PMMA block. All plots have 1 mm binning for the PG profiles, which indicates the mechanical and
electronic constraints of a detection stage may not have been implemented. Although an interesting
study, these points are significant reasons to be careful drawing conclusions about the comparative
efficacy of either a knife-edge or multi-parallel-slit design.

5.8.2 Treatment planning

In particle therapy and particle therapy imaging literature we often see it mentioned that a spread out
Bragg Peak (SOBP) is achieved by giving the most distal energy layer the highest intensity and each
successive energy layer is of lower energy and of lower intensity. This view makes sense for PTVs with
a rectangular shape and rectangular targets, but of course patients do not fit that model. The surface
where the beam impinges the patient is, seen perpendicular to the beam path, not flat, but curved,
as is the entrance and exit surfaces of the PTV. This leads to the effect that the geometrically distal
layer requires various energies (energy layers). In other words, energy-layers alone are not a suitable
proxy for geometrical position, and therefore not for range of FOP verification.

5.8.3 Fall-off retrieval procedure

Range estimation using PGs requires observing the PG production rate along the beam path. This
is the guiding design principle behind the collimated PG cameras: a 1D line profile is obtained. PG
range estimation then requires that a single range is extracted from such a 1D PG profile. Multiple
approaches have been proposed (Gueth et al., 2013; Janssen et al., 2014; Roellinghoff et al., 2014;
Smeets et al., 2012; Sterpin et al., 2015), all ad hoc, and their performance is usually presented on a
spot composed of 108 protons, which, as seen in the previous section, is an exceptional condition in
modern treatment plans. Moreover, the algorithms are tested on 108 particle spots in artificial and
thus relatively simple phantoms, sidestepping clinically common inhomogeneous circumstances.
The concept of a single range per spot does not hold up in laterally inhomogeneous targets, and no
fit procedure accounts for such situations. For the IBA Knife-Edge camera a fit algorithm is proposed
Smeets et al. (2015) for range retrieval from full energy layers, due to the passive scattering nozzle
at OncoRay, Dresden. By integrating the PG yields over an energy layer, the issue of low yields is
solved, and inhomogeneity side-stepped: the signals recorded are convolutions of all lateral spots
in the layer, which diminishes localized range differences but improves the ability of reconstruction.
Another point that all fit methods invented for the IBA knife-edge design share, is the requirement
that the camera is centered on the expected fall-off position.

As a small illustration, figure 5.1 shows how the choice of parameters affects the obtained fall-off
position for certain spot groups in an early version of our FOP estimator. We hoped to see conver-
gence towards a single value, but it proved tricky to ensure this worked well for an arbitrary spot
(group).

5.8.4 Absolute Fall-off determination

As mentioned in the Camera alignment section under the Knife-Edge verification, correct alignment
of the camera is important to avoid the edge-effects mentioned in Sterpin et al. (2015, Section IV.A.3).
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Figure 5.1: Performance of spline fit of various orders (labels on x-axis) on the PG yield of a full field
(left), a selected energy layer (center) and a selected spot (right). The collimated camera used in the
simulation detected the position of the PG with 1 mm bins. In red the retrieved range is obtained
by first binning the data to 8 mm (as in the IPNL collimated camera) and in blue data is smoothed
before the fit is applied. Plotted is the PG fall-off shift between a treatment plan irradiated on the
planning CT and a RPCT recorded a few weeks into the treatment. This patient had seen serious
weight loss, causing the plans as a whole to shift forward (decrease in subcutaneous fat), but selected
layers and spots to decrease (the wind pipe was more closed due to tumor growth in the RPCT).
While the retrieved range difference converges for the full field and energy layer, for the spot the
noise prevents convergence to any particular range.
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Ensuring correct positioning, was trickier than anticipated. After ensuring our simulations and Gate
correctly placed the geometry at the intended locations, figure 5.2 could be produced.
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Figure 5.2: On the left and right the PG production (Prod) is given in blue, that signal convoluted with
a Point Spread Function (PSF) with smoothing parameter 10 mm and 20 mm (dashed) in green, and
the detected response in black crosses. Red are the fitted curves, on the left with λ = 2 and on the
right λ= 0. The cost of smoothing, required especially for lower statistics, comes at the price of a FOP
shift.

Slit cameras have collimators and collimators have a finite depth. The depth and the distance to
the photosensitive detector determine the penumbra of the detected signal. For a perfect collimator
a tophat-function, with the width of the slit, is expected, while for real collimators the tophat ’sags’
into a roughly trapezoid function. Scatter in the collimator smooths the trapezoid out to some degree,
approaching roughly a Gaussian. We simulate that effect by convolving the PG production curve with
a Point Spread Function (PSF) with smoothing parameter 10 mm and 20 mm. Depending on the
smoothing factor λ in eq. 1 in the paper, a curve is obtained on which we compute the FOP according
to the procedure described earlier. As figure 5.2 shows, both adding the smoothing kernel to the
PG production profile and the smoothing kernel fitted through the measured data each introduce
their own forward change in the FOP. Here is it demonstrated for a pencil beam in a waterbox, the
same used to validate the knife edge results in the paper. In real circumstances, the noise of the
detected signal makes the bias even larger, and with the KE camera again larger than for the MPS
camera, perhaps also because we have not reached sufficient statistics even with 109 primaries and
our results are noise dominated. The slight tail for the datapoints past x = 0 may be explained by
high energy gammas penetrating the collimator leaves.

In conclusion, an improved reconstruction might include a smoothing factor λ dependent on
total PG counts, because that implies a more converged signal and less need to smooth out noise.
Note that this bias is consistent, so when searching for FOP differences, the effect does not matter.
Only for cameras that require precise FOP alignment is this an issue.
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5.8.5 Improvements to vpgTLE

At the time of writing this thesis, colleague Thomas Cajgfinger has implemented Fixed Forced detec-
tion and an Angular Responce Function to speed up generating PET detector output, within Gate.
The premise of this technique is to save computation time by propagating particles only if they will
be detected, and then to skip propagation through the collimator and absorber by having a func-
tion that relates incident particle positions, angles and energies to the detector response. Roughly
speaking, the detector response is estimated and stored for later use, after which a plausible signal
is generated with the correct magnitude and noise as would have an analog Monte Carlo simulation.
A master student, Gunjan Kayal, was attracted to validate the procedure for Stage 2 of vpgTLE. If
successful, it should be made available in Gate in the summer or autumn of 2017.
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Chapter 6

Conclusion

6.1 Summary of accomplishments

The vpgTLE variance reduction method was implemented and validated as part of this thesis pro-
gram. The method was found to be compatible with inhomogeneities, flexible in terms of output
and offers a speed-up of a factor 103. We also noted that no work has been done to validate PG back-
grounds in PG simulations, which is essential if simulations are used to predict real world results. The
vpgTLE method is publicly available as part of Gate version 7.1 and up, enabling researchers from
over the globe to benefit without any further requirement. Some researchers have already shown
interest and I eagerly await any results that may be obtained with this method.

Secondly, the first fully clinical proton therapy simulation monitored by PG collimated detectors
was presented, in which a real clinical deviation was investigated. vpgTLE made it possible to com-
plete this study in a reasonable time frame, and enabled spot-by-spot analysis. A new spot-grouping
method was presented and demonstrated, and we think the study will move the discussion in the PG
monitoring forwards in terms of how these detectors can be used to obtain clinically relevant results.
Based on a study of treatment plans, spot-by-spot PG verification is unlikely with the current state of
PG collimated cameras, but we showed that grouping geometrically close spots does not change the
σ of the FOP appreciably and thus spot grouping enables PG verification.

The title of the PhD research proposal is “Towards real-time treatment control in protontherapy
using prompt-radiation imaging: simulation and system optimization”. To what extent did we ad-
vance towards that goal? I think we did, by producing a faster tool for PG simulations, and showing
how it can be used to study various aspects of PG detection, and it helped us identify areas in which
improvements are necessary (PG profile processing and spot grouping).

6.2 Further thoughts

If I would have 6 months more, I would take on the research of Chapter 5 in a more systematic way.
Right now we depended on a spot selection method resulting in three spots, which we studied in
detail. Perhaps it was necessary to start small, because we learned a lot even from only three spots,
but in the end a more statistical approach where we obtain FOPs, their precisions and FOP-shift pre-
cisions for all spots in the plan would have made us more confident on whether or not we happened
to choose outliers or not. Currently, the main limitations are disk space required for the intermediate
image (one PG source is ≈1.5 GB, so if a PG source for each individual spot is desired, 1.5 TB of disk
space is required) and the simulation time of vpgTLE Stage 2 (the propagation of photons into the
detector). The first stage needs to be only run once, and takes about 3 hours for 106 primary protons
(equivalent to 109 protons with analog MC) on one core of a 4 year old laptop (Intel Core i7-3740QM
CPU @ 2.70 GHz), while stage two takes ≈ 14 hours, on a single core, to reach the statistics for 109
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protons. Reducing the size of the intermediate image may be possible by exploiting the sparseness of
the 4D image, as well as reducing the voxel sizes in dimensions that are not measured, and reducing
the sampling resolution of the PG production cross sections in Stage 0. A master student was at-
tracted to help validate a recently developed Fixed Forced Detection and Angular Response Function
components in Gate as a replacement for Stage 2. This will hopefully speed-up the slowest part of a
vpgTLE simulation, enabling even faster iteration of research simulations. It would have been inter-
esting to simulate the detection profiles per spot, which could then be summed in post-processing
as desired, depending on the precise grouping method. We iterated over the grouping method, and
that required generation of new sources and simulation of the 50 CT and 50 RPCT Stage 2 simula-
tions, slowing us down a bit with respect to finding an optimal grouping strategy. In addition, this
was one patient with one field of one plan; we did gather more CT+RPCT images but did not have
time to perform analysis across plans.

6.3 Clinical use of Prompt Gamma detection

We have seen various PG detector designs, each revealing different properties of the PG. Heavier ions
produce more PGs: a carbon primary has a PG production probability of about 40% whereas for
protons this number is 5-10%, which must be balanced by the fact that fewer carbons are required
to reach a certain dose (a factor 5 fewer carbon ions is used in a comparative study with protons in
Pinto et al. (2015)). Perhaps because the first step in designing a detector is whether or not it can
be done at all, not much thought has gone into how a clinician could use these outputs. Clinicians
working in radiotherapy and radiology are used to work with (CB)CT and occasionally MRI images.
Adding a modality is a major challenge, because thousands of clinicians would have to be trained
in understanding it. Moreover, at this time providing PG detection outputs in the form of images
seems a distant prospect. It also may turn out spot-by-spot statistics are too low and collecting data
over larger spot groups is a necessity. What kind of spot groups make most clinical sense? It can be
imagined that by grouping spots in geometric proximity and in clinically related structures are a way
to provide more targeted feedback. Perhaps a treatment plan could output a list of range-sensitive
spots stopping near AORs, or crossing structures likely to deform. A geometric criterion seems a good
way to ensure coherence between the deviations of the spots within a group, instead of canceling out
when spots in different structures suffering from different deformations are grouped.

If we keep in mind the outputs of collimated and timing cameras, the point of emission of the PG
and from that an inferred fall-off position and perhaps range, the information could be presented in
terms of thresholds or tolerances: how many spot or spot groups overshoot and undershoot? Perhaps
we can measure the full PG profile, and together with a planned profile (Schumann et al., 2016) we
could perform profile matching (Gueth et al., 2013) to produce per spot(group) a likelihood of shift
and likelihood of no shift estimates. Going even further, the profiles might be converted back to dose,
as demonstrated in Schumann et al. (2016). Then, the dose can be summed over all spot(group)s,
from different fields, and overlaid on a CT. That would provide the type of image data clinicians are
familiar with, and can work with right away. A dose-passing rate of a gamma-index are established
methods to compare dosemaps. If a CBCT is present in the treatment room, together with improved
deformable registration techniques (Park et al., 2017; Yan, 2010), a CT of the day can be produced
for more accurate matching of the PG-derived dosemap and the patients’ structures. Supplement
this with adaptive particle therapy, also based on the CT+CBCT deformable registration (Veiga et al.,
2015), real gains may be within reach in terms of lowering acceptable tolerance margins.

Radiomics is an upcoming medical method constituted on the idea that machines can now be
trained to deduce much more from clinical data such as CTs (Yip and Aerts, 2016). Based on the vast
volumes of medical data that every hospital collects during the patients treatments, a big data ap-
proach may result in software that can learn to extract more from the available data than (human)
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clinicians currently can. Machine learning as proposed in Gueth et al. (2013) seeks to use such meth-
ods for PG to fall-off reconstruction. Unfortunately, the amount of available training data for PG
detection is extremely limited, but it is a promising start to have PG detector monitor treatments as
a matter of course (Richter et al., 2016; Verburg and Bortfeld, 2016). A similar approach might be
considered for treatment planning: software may be much better at real-time dose painting based
on live data from a CT+CBCT deformable registration before and PG detection during treatment.
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Variance of the prompt-γ spectrum TLE estimator

Jean Michel Létang

July 30, 2015

Exact formula. The prompt-γ spectrum TLE estimator is

Ŝ(v) =
1

n

n∑

i=1

G∑

g=1

Γmv(Eg)Li(Eg, v) (1)

where Li(Eg, v) corresponds to the total track length of protons of energy Eg in volume v within proton
i history. The variance of this estimator can written without approximation from the distribution of
the n scored quantities event-wise as

nσ2
[
ŜTLE,Eγ

]
=

1

n

n∑

i=1

A2
i −

(
1

n

n∑

i=1

Ai

)2

(2)

with Ai the scored prompt-γ spectrum value in the energy bin Eγ for event i is

Ai =
G∑

g=1

ΓmvEγ (Eg)Li(Eg, v) (3)

Therefore, to compute on-line the error on the prompt-γ TLE spectrum, two prompt-γ spectrum vectors
must be scored over the events:

∑n
i=1A

2
i and

∑n
i=1Ai. This summation process takes longer than the

simple track-length sum based equation for the variance in equation 8, which is based on independency
of the track-length distribution with respect to the proton energy.

Reformulation. Using Ln(Eg, v) and L2n(Eg, v) the arithmetic mean of the n values of Li(Eg, v) and
L2
i (Eg, v) respectively, we get
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We see from this formula that the triangular summation
∑
g<h =

∑G
h=2

∑h−1
g=1 over the proton energy

cannot be computed on the sole knowledge of Ln(Eg, v) and L2n(Eg, v). We now have two options:
either to consider Li(Eg, v) as independent variables with respect to the proton energy, or to consider
them fully correlated i.e. identical.

Independent track length distribution. Now, if all Li(E, v) variables are independent between
all proton energies E for a given i event, the variance becomes
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which is
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and we get the random variance contribution that was given in the submitted article
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which gives the lower random variance boundary for the TLE estimator.

Identical track length distribution. If all Li(E, v) variables are identical (i.e. entirely correlated)
between all proton energies E for a given i event, the variance becomes
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which gives
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or finally
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which gives the upper random variance boundary for the TLE estimator.
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various proton clinics, we observe very few spots with weights over $10^8$. We did not manage to detect the morphological 
change present, an approximately 13mm shift, between the (RP)CT with either PG camera, with such statistics. Only for $10^9$
primaries, with one of the cameras, the change may be expected to be detected.A new spot-grouping method is proposed that 
combines better measurement statistics with fall-off preservation.
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